• Title/Summary/Keyword: R.C. analysis and design

Search Result 422, Processing Time 0.028 seconds

ViP: A Practical Approach to Platform-based System Modeling Methodology

  • Um, Jun-Hyung;Hong, Sung-Pack;Kim, Young-Taek;Chung, Eui-Young;Choi, Kyu-Myung;Kong, Jeong-Taek;Eo, Soo-Kwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.89-101
    • /
    • 2005
  • Research on highly abstracted system modeling and simulation has received a great deal of attention as of the concept of platform based design is becoming ubiquitous. From a practical design point of view, such modeling and simulation must consider the following: (i) fast simulation speed and cycle accuracy, (ii) early availability for early stage software development, (iii) inter-operability with external tools for software development, and (iv) reusability of the models. Unfortunately, however, all of the previous works only partially addresses the requirements, due to the inherent conflicts among the requirements. The objective of this study is to develop a new system design methodology to effectively address the requirements mentioned above. We propose a new transaction-level system modeling methodology, called ViP (Virtual Platform). We propose a two-step approach in the ViP method. In phase 1, we create a ViP for early stage software development (before RTL freeze). The ViP created in this step provides high speed simulation, lower cycle accuracy with only minor modeling effort.(satisfying (ii)). In phase 2, we refine the ViP to increase the cycle accuracy for system performance analysis and software optimization (satisfying (i)). We also propose a systematic ViP modeling flow and unified interface scheme based on utilities developed for maximizing reusability and productivity (satisfying (ii) and (iv)) and finally, we demonstrate VChannel, a generic scheme to provide a connection between the ViP and the host-resident application software (satisfying (iii)). ViP had been applied to several System-on-a-chip (SoC) designs including mobile applications, enabling engineers to improve performance while reducing the software development time by 30% compared to traditional methods.

A Study of the Optimization of the Compounded PP Using the DOE (실험계획법을 이용한 복합 폴리프로필렌의 최적화 연구)

  • Park, Sung-Ho;Lim, Dong-Cheol;Kim, Ki-Sung;Bae, Jong-Rak;Jeon, Oh-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.1
    • /
    • pp.74-85
    • /
    • 2010
  • In order to formulate the compounded polypropylene(C-PP) which is suitable to an automotive door trim panel, 9 sorts of properties were measured after manufacturing the C-PP using an extruder and an injection machine with polypropylene(PP), ethylene-octene rubber(EOR) and talc. Mixture design, especially extreme vertices design, in DOE with MINITAB - commercial software was used to analyze the data. The relations between each property and each component, for example, $y=0.00907222x_1+0.00870556x_2+0.0155722x_3$ for specific gravity, were found out by the regression analysis and the variance analysis. The optimized formulation of the C-PP for an automotive door trim panel was acquired at PP(77.6962), EOR(11.0238) and talc(10.2800) by use of the response optimizer(mixture) in MINITAB.

Development and Nonlinear Dynamic Model of Sliding Wall Damper To Retrofit of R/C Frame Structures (R/C 골조구조물 내진보강을 위한 슬라이딩 벽식감쇠기의 개발 및 비선형 동적해석모델)

  • 조창근;박문호;장준호;김기욱;정인규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.411-418
    • /
    • 2003
  • In order to retrofit R/C frame structures, a newly proposed Teflon sliding wall damper, consisted of Teflon slider and R/C shear wall, is evaluated by the dynamic analysis model of inelastic frame structures. From analysis results, it is shown that the damper reduces the time-history responses, the maximum story drifts, and the damage of R/C member. By control of damper pressures, especially, the damper can be easily applicable not only to capacity design according to required responses and member damages but also to active damper with actively controlling devices.

  • PDF

A Study on Reliability Based Design Criteria for Reinforced Concrete Bridge Superstructures (철근(鐵筋)콘크리트 도로교(道路橋) 상부구조(上部構造) 신뢰성(信賴性) 설계규준(設計規準)에 관한 연구(研究))

  • Cho, Hyo Nam
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.3
    • /
    • pp.87-99
    • /
    • 1982
  • This study proposes a reliability based design criteria for the R.C. superstructures of highway bridges. Uncertainties associated with the resistance of T or rectangular sections are investigated, and a set of appropriate uncertainties associated with the bridge dead and traffic live loads are proposed by reflecting our level of practice. Major 2nd moment reliability analysis and design theories including both Cornell's MFOSM(Mean First Order 2nd Moment) Methods and Lind-Hasofer's AFOSM(Advanced First Order 2nd Moment) Methods are summarized and compared, and it has been found that Ellingwood's algorithm and an approximate log-normal type reliability formula are well suited for the proposed reliability study. A target reliability index (${\beta}_0=3.5$) is selected as an optimal value considering our practice based on the calibration with the current R.C. bridge design safety provisions. A set of load and resistance factors is derived by the proposed uncertainties and the methods corresponding to the target reliability. Furthermore, a set of nominal safety factors and allowable stresses are proposed for the current W.S.D. design provisions. It may be asserted that the proposed L.R.F.D. reliability based design criteria for the R.C. highway bridges may have to be incorporated into the current R.C. bridge design codes as a design provision corresponding to the U.S.D. provisions of the current R.C. design code.

  • PDF

Reliability Based Stability Analysis and Design Criteria for Reinforced Concrete Retaining Wall (신뢰성(信賴性) 이론(理論)에 의한 R.C.옹벽(擁壁)의 안정해석(安定解析) 및 설계규준(設計規準))

  • Cho, Tae Song;Cho, Hyo Nam;Chun, Chai Myung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.71-86
    • /
    • 1983
  • Current R.C. retaining wall design is bared on WSD, but the reliability based design method is more rational than the WSD. For this reason, this study proposes a reliability based design criteria for the cantilever retaining wall, which is most common type of retaining wall, and also proposes the theoretical bases of nominal safety factors of stability analysis by introducing the reliability theory. The limit state equations of stability analysis and design of each part of cantilever retaining wall are derived and the uncertainty measuring algorithms of each equation are also derived by MFOSM using Coulomb's coefficient of the active earth pressure and Hansen's bearing capacity formula. The levels of uncertainties corresponding to these algorithms are proposed appropriate values considering our actuality. The target reliability indices (overturning: ${\beta}_0$=4.0, sliding: ${\beta}_0$=3.5, bearing capacity: [${\beta}_0$=3.0, design for flexure: [${\beta}_0$=3.0, design for shear: ${\beta}_0$=3.2) are selected as optimal values considering our practice based on the calibration with the current R.C. retaining wall design safety provisions. Load and resistance factors are measured by using the proposed uncertainties and the selected target reliability indices. Furthermore, a set of nominal safety factors, allowable stresses, and allowable shear stresses are proposed for the current WSD design provisions. It may be asserted that the proposed LRFD reliability based design criteria for the R.C. retaining wall may have to be incorporated into the current R.C. design codes as a design provision corresponding to the USD provisions of the current R.C. design code.

  • PDF

A Study on the Seisemic Performance Method for R.C bridge by using the Finite Element Analysis Program (유한요소해석 프로그램를 이용한 R.C교각의 내진성능 평가 기법 연구)

  • Park, Yeoun-Soo;Choi, Sun-Min;Lee, Byung-Geun;Seo, Byung-Chul;Park, Sun-Joon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.301-306
    • /
    • 2008
  • The present seismic analysis of Road-Bridge Design Standard is on a basis of load-vased analysis which lets structures have the strength over load. In this study, the capacity spectrum method, a kind of displacement based method, which is evaluated by displacement of structure, is presented as an alternative to the analysis method based on load. Seismic capacity is performed about the existing reinforced concrete pier which has already secured seismic design by capacity spectrum method. As a result, capacity spectrum method could realistically evaluate the non-elastic behavior of structures easilly and quickly and the displacement of structures for variable ground motion level. And it could efficiently apply to an evaluation of seismic capacity about the existing structures and a verification of design for capacity target of the structure. We propose the seisemic performance method by using the Finite Element Analysis Program.

  • PDF

Structural analysis of cracked R.C. members subjected to sustained loads and imposed deformations

  • Mola, F.;Gatti, M.C.;Meda, G.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.637-650
    • /
    • 2001
  • A structural analysis of cracked R.C. members under instantaneous or sustained loads and imposed displacements is presented. In the first part of the paper the problem of deriving feasible moment-curvature diagrams for a long term analysis of R.C. sections is approached in an exact way by using the Reduced Relaxation Function Method in state I uncracked and the method suggested by CEB in state II cracked. In both states the analysis of the main parameters governing the problem has shown that it is possible to describe the concrete creep behaviour in an approximate way by using the algebraic formulation connected to the Effective Modulus Method. In this way the calculations become quite simple and can be applied in design practice without introducing significant errors. Referring to continuous beams, the structural analysis is then approached in a general way, applying the Force Method and the Principle of Virtual Works. Finally, considering single members, the structural analysis is performed by means of a graphical procedure based on the application of feasible moment-rotation diagrams which allow to easily solve various structural problems and to point out the most interesting aspects of the long term behaviour of cracked R.C. members with rigid or elastically deformable redundant restraints.

Seismic assessment of R/C residential buildings with infill walls in Turkey

  • Korkmaz, Kasim Armagan;Kayhan, Ali Haydar;Ucar, Taner
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.681-695
    • /
    • 2013
  • In 1999 Marmara and 2011 Van earthquakes in Turkey, majority of the existing buildings either sustained severe damage or collapsed. These buildings include masonry infill walls in both the interior and exterior R/C frames. The material of the masonry infill is the main variant, ranging from natural stones to bricks and blocks. It is demanding to design these buildings for satisfactory structural behavior. In general, masonry infill walls are considered by its weights not by interaction between walls and frames. In this study, R/C buildings with infill walls are considered in terms of structural behavior. Therefore, 5 and 8-story R/C buildings are regarded as the representative models in the analyses. The R/C representative buildings, both with and without infill walls were analyzed to determine the effects of structural behavior change. The differences in earthquake behavior of these representative buildings were investigated to determine the effects of infill walls leading structural capacity. First, pushover curves of the representative buildings were sketched. Aftermath, time history analyses were carried out to define the displacement demands. Finally, fragility analyses were performed. Throughout the fragility analyses, probabilistic seismic assessment for R/C building structures both with and without infill walls were provided. In this study, besides the deterministic assessment methodology, a probabilistic approach was followed to define structural effect of infill walls under seismic loads.

A Study on Strengthening of R/C T Girder Bridge using Standardized Strengthening Technique with Fiber Plastic(I) (표준화된 섬유보강공법을 적용한 RC T형 교량의 성능향상연구(I))

  • 심종성;오홍섭;임채옥
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.545-548
    • /
    • 1999
  • The purpose of this study is application of strengthening technique of R/C concrete bridge by standardization of repair and rehabilitation. For that, experiment to bridge is necessary, and through the experiment, this study can identify the efficiency o applied method and analysis of design parameters with can't get in the laboratory experiment. This study will prove the structural behavior of R/C type girder bridge which is deteriorated but repaired and rehabilitation from standardized strengthening method with fiber plastic.

  • PDF

Empennage Design of Solar-Electric Powered High Altitude Long Endurance Unmanned Aerial Vehicle (고고도 장기체공 전기 동력 무인기의 꼬리 날개 설계)

  • Hwang, Seung-Jae;Lee, Yung-Gyo;Kim, Cheol-Wan;Ahn, Seok-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.708-713
    • /
    • 2013
  • KARI is developing a solar-electric powered HALE UAV(EAV-3). For demonstrating the technology, EAV-2H, a down-scaled version of EAV-3, is developed and after EAV-2H's initial flight test, the directional stability and control need to be improved. Thus, the vertical tail and rudder of EAV-2H are redesigned with Advanced Aircraft Analysis(AAA). Size of the rudder is increased from mean chord ratio of rudder to vertical tail, $C_r/C_v(%)=30$ to $C_r/C_v(%)=60$ and size of the vertical tail is reduced 15%. As a result, the directional control to side wind($v_1$) is improved to sideslip angle, ${\beta}(deg)=25^{\circ}$ and $v_1(m/sec)=3.54$. Also, variation of airplane side force coefficient with sideslip angle ($C_{y_{\beta}}$) and variation of airplane side force coefficient with dimensionless rate of change of yaw rate ($C_{y_r}$) are reduced 15% and 22%, respectively to minimize the effect of side wind. The empennage design of EAV-2H is verified with flight tests and applied to design of KARI's solar-electric-powered EAV-3.