• 제목/요약/키워드: R.C. analysis and design

검색결과 422건 처리시간 0.02초

한계상태방정식에 의한 R/C 전단벽의 유한요소 간편 해석과 설계 (Simplified Analysis and Design with Finite Element for Reinforced Concrete Shear Walls Using Limit State Equations)

  • 박문호;조창근;이승기
    • 한국전산구조공학회논문집
    • /
    • 제16권1호
    • /
    • pp.43-52
    • /
    • 2003
  • 본 논문은 콘크리트 균열방향의 회전 및 철근의 항복에 따른 2차원 R/C 구조물의 극한거동 덴 한계상태설계에 관한 연구를 다룬 것으로, 유한요소모델에 적용하여 비선형 해석 및 한계상태설계가 가능한 수치 해석 및 설계 알고리즘을 소개하였다. 철근의 설계를 위하여, 각 유한요소의 극한거동에 기초한 한계상태설계방정식이 유한요소 알고리즘에 도입되었다. 한편, 하중에 따른 콘크리트 균열방향의 회전 및 철근의 항복을 고려한 2차원 R/C 평면요소의 단순화된 실용적 비선형 응력-변형률 거동의 구성관계모델을 제시하여 비선형 유한요소해석 알고리즘을 구성하였다 제시된 해석 모델을 R/C 전단벽의 실험모델과 비교하여 검증하도록 하였으며, R/C 전단벽에 대한 설계 예를 통하여, 각각의 유한요소에서 얻어진 설계 철근비를 한계상태설계방정식으로부터 산정하였다.

R/C Box 암거설계 전문가시스템 (Expert System for R/C Box-Culvert Design)

  • 김우;김대중;정제평
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 가을 학술발표회 논문집
    • /
    • pp.261-266
    • /
    • 1994
  • The objective of this study is to develop the expert system for R/C box culvert design. This program provided various functions to improve automatic design. The program is composed of five steps. The characteristics of each step are as follows; 1) Preprocessing Step, 2) Analysis Step, 3) View of Memberforce Step, 4) Postprocessing Step, 5) Printing of Design-Sheet Step. Finally, Expert System and Knowledge Database System is developed for the drawing of optimal R/C box-culvert design.

  • PDF

Application of computational technologies to R/C structural analysis

  • Hara, Takashi
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.97-110
    • /
    • 2011
  • In this paper, FEM procedure is applied to the static and dynamic analyses of R/C structures. Simple R/C shell structure is solved by using FEM procedures and the experimental evaluations are performed to represent the applicability of FEM procedure to R/C structures. Also, R/C columns are analyzed numerically and experimentally. On the basis of these results, FEM procedures are applied to the R/C cooling tower structures assembled by huge R/C shell structure and a lot of discrete R/C columns. In this analysis, the parallel computing procedures are introduced into these analyses to reduce the computational effort. The dynamic performances of R/C cooling tower are also solved by the application of parallel computations as well. From the numerical analyses, the conventional FEM procedures combined with computational technologies enables us to design the huge R/C structures statically and dynamically.

반복측정 설계와 계층적 실험설계의 구조모형 (Analysis of Structure Model for Repeated Measurement Design and Hierarchical Design)

  • 최성운
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2011년도 춘계학술대회
    • /
    • pp.95-99
    • /
    • 2011
  • The research analyzes structure models of Repeated Measurement Design (RMD) and Hierarchical Design (HD). The experimental unit of RMD model is living organisms, such as human. In contrast, HD is used when all the factors are random. The HD models are derived from R:B:A, R:C:B:A and R:C:($A{\times}B$).

  • PDF

Earthquake performance investigation of R/C residential buildings in Turkey

  • Korkmaz, Kasim Armagan;Demir, Fuat;Yenice, Tugce
    • Computers and Concrete
    • /
    • 제15권6호
    • /
    • pp.921-933
    • /
    • 2015
  • The aim of this study is to determine the earthquake performances of reinforced concrete (R/C) residential buildings in Turkey and to analyze the parameters that affect the performance. The performance of Turkish residential buildings, determined by their levels of damage, directly relates to their structural systems. Damage parameters observed from previous earthquakes define structural parameters selected to be used in the present study. Five different types of frame R/C buildings were modeled. For the analysis, the model buildings vary according to the number of stories, column sizes, and reinforcement and concrete strength parameters. The analyses consider gravity forces and earthquake loads through 1975 and 2007 Turkish design codes. In a total of 720 different R/C buildings were investigated for the analysis to obtain capacity curves. A performance evaluation was employed by considering the Turkish design code (TDC-2007). The current study ignores irregularities such as soft stories or short columns. The study's analysis considers a comparison of the parameters' influence on the structural performance of the model buildings.

Investigation of dynamic P-Δ effect on ductility factor

  • Han, Sang Whan;Kwon, Oh-Sung;Lee, Li-Hyung
    • Structural Engineering and Mechanics
    • /
    • 제12권3호
    • /
    • pp.249-266
    • /
    • 2001
  • Current seismic design provisions allow structures to deform into inelastic range during design level earthquakes since the chance to meet such event is quite rare. For this purpose, design base shear is defined in current seismic design provisions as the value of elastic seismic shear force divided by strength reduction factor, R (${\geq}1$). Strength reduction factor generally consists of four different factors, which can account for ductility capacity, overstrength, damping, and redundancy inherent in structures respectively. In this study, R factor is assumed to account for only the ductility rather than overstrength, damping, and redundancy. The R factor considering ductility is called "ductility factor" ($R_{\mu}$). This study proposes ductility factor with correction factor, C, which can account for dynamic P-${\Delta}$ effect. Correction factor, C is established as the functional form since it requires computational efforts and time for calculating this factor. From the statistical study using the results of nonlinear dynamic analysis for 40 earthquake ground motions (EQGM) it is shown that the dependence of C factor on structural period is weak, whereas C factor is strongly dependant on the change of ductility ratio and stability coefficient. To propose the functional form of C factor statistical study is carried out using 79,920 nonlinear dynamic analysis results for different combination of parameters and 40 EQGM.

Effective stiffness in regular R/C frames subjected to seismic loads

  • Micelli, Francesco;Candido, Leandro;Leone, Marianovella;Aiello, Maria Antonietta
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.481-501
    • /
    • 2015
  • Current design codes and technical recommendations often provide rough indications on how to assess effective stiffness of Reinforced Concrete (R/C) frames subjected to seismic loads, which is a key factor when a linear analysis is performed. The Italian design code (NTC-2008), Eurocode 8 and ACI 318 do not take into account all the structural parameters affecting the effective stiffness and this may not be on the safe side when second-order $P-{\Delta}$ effects may occur. This paper presents a study on the factors influencing the effective stiffness of R/C beams, columns and walls under seismic forces. Five different approaches are adopted and analyzed in order to evaluate the effective stiffness of R/C members, in accordance with the scientific literature and the international design codes. Furthermore, the paper discusses the outcomes of a parametric analysis performed on an actual R/C building and analyses the main variables, namely reinforcement ratio, axial load ratio, concrete compressive strength, and type of shallow beams. The second-order effects are investigated and the resulting displacements related to the Damage Limit State (DLS) under seismic loads are discussed. Although the effective stiffness increases with steel ratio, the analytical results show that the limit of 50% of the initial stiffness turns out to be the upper bound for small values of axial-load ratio, rather than a lower bound as indicated by both Italian NTC-2008 and EC8. As a result, in some cases the current Italian and European provisions tend to underestimate second-order $P-{\Delta}$ effects, when the DLS is investigated under seismic loading.

Prediction of concrete strength from rock properties at the preliminary design stage

  • Karaman, Kadir;Bakhytzhan, Aknur
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.115-125
    • /
    • 2020
  • This study aims to explore practical and useful equations for rapid evaluation of uniaxial compressive strength of concrete (UCS-C) during the preliminary design stage of aggregate selection. For this purpose, aggregates which were produced from eight different intact rocks were used in the production of concretes. Laboratory experiments involved the tests for uniaxial compressive strength (UCS-R), point load index (PLI-R), P wave velocity (UPV-R), apparent porosity (n-R), unit weight (UW-R) and aggregate impact value (AIV-R) of the rock samples. UCS-C, point load index (PLI-C) and P wave velocity (UPV-C) of concrete samples were also determined. Relationships between UCS-R-rock parameters and UCS-C-concrete parameters were developed by regression analyses. In the simple regression analyses, PLI-C, UPV-C, UCS-R, PLI-R, and UPV-R were found to be statistically significant independent variables to estimate the UCS-C. However, higher coefficients of determination (R2=0.97-1.0) were obtained by multiple regression analyses. The results of simple regression analysis were also compared to the limited number of previous studies. The strength conversion factor (k) values were found to be 14.3 and 14.7 for concrete and rock samples, respectively. It is concluded that the UCS-C can roughly be estimated from derived equations only for the specified rock types.

SSI effects on the redistribution of seismic forces in one-storey R/C buildings

  • Askouni, Paraskevi K.;Karabalis, Dimitris L.
    • Earthquakes and Structures
    • /
    • 제20권3호
    • /
    • pp.261-278
    • /
    • 2021
  • In the current work, a series of seismic analyses of one-storey asymmetrical reinforced concrete (R/C) framed buildings is accomplished while the effect of soil deformability on the structural response is investigated. A comparison is performed between the simplified elastic behavior of R/C elements according to the structural regulations' instructions to the possible non-linear behavior of R/C elements under actual circumstances. The target of the time history analyses is the elucidation of the Soil-Structure Interaction (SSI) effect in the seismic behavior of common R/C structures by examining the possible elastic or elastoplastic behavior of R/C sections because of the redistribution of the internal forces by employing a realistic damage index. The conclusions acquired from the presented elastic and elastoplastic analyses supply practical guidelines towards the safer design of structures.

SA508-3재의 제하컴플라이언스법과 하중비해석을 이용한 파괴저항곡선 평가 (J-R Curve Characterization by Load Ratio Analysis and Unloading Compliance Method for SA508 C-3 steel)

  • 임만배;차귀준;윤한기;안원기
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.65-75
    • /
    • 1998
  • The fracture resistance curve is one of most important and design techniques employed in nuclear pressure vessel structures. This study is to evaluate the J-R curve characteristics for the SA508C-3 by the unloading compliance method and load rato analysis. The effect of strain aging for the exponential correlation of the J-R curve in this metal are investigated at room temperature, 20$0^{\circ}C$ and 30$0^{\circ}C$. The load ratio analysis method can evaluate the J-R curve by using the simple tension load-displacement curve only without the repeat of the unloading and loading. Therefore, the analysis by the proposed load ratio method has a merit, in comparison with the unloading compliance method, which can measure the crack length without the precision measurement equipment.

  • PDF