• Title/Summary/Keyword: R-simple

Search Result 2,193, Processing Time 0.036 seconds

Development of a Chinese cabbage model using Microsoft Excel/VBA (엑셀/VBA를 이용한 배추 모형 제작)

  • Moon, Kyung Hwan;Song, Eun Young;Wi, Seung Hwan;Oh, Sooja
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.228-232
    • /
    • 2018
  • Process-based crop models have been used to assess the impact of climate change on crop production. These models are implemented in procedural or object oriented computer programming languages including FORTRAN, C++, Delphi, Java, which have a stiff learning curve. The requirement for a high level of computer programming is one of barriers for efforts to develop and improve crop models based on biophysical process. In this study, we attempted to develop a Chinese cabbage model using Microsoft Excel with Visual Basic for Application (VBA), which would be easy enough for most agricultural scientists to develop a simple model for crop growth simulation. Results from Soil-Plant-Atmosphere-Research (SPAR) experiments under six temperature conditions were used to determine parameters of the Chinese cabbage model. During a plant growing season in SPAR chambers, numbers of leaves, leaf areas, growth rate of plants were measured six times. Leaf photosynthesis was also measured using LI-6400 Potable Photosynthesis System. Farquhar, von Caemmerer, and Berry (FvCB) model was used to simulate a leaf-level photosynthesis process. A sun/shade model was used to scale up to canopy-level photosynthesis. An Excel add-in, which is a small VBA program to assist crop modeling, was used to implement a Chinese cabbage model under the environment of Excel organizing all of equations into a single set of crop model. The model was able to simulate hourly changes in photosynthesis, growth rate, and other physiological variables using meteorological input data. Estimates and measurements of dry weight obtained from six SPAR chambers were linearly related ($R^2=0.985$). This result indicated that the Excel/VBA can be widely used for many crop scientists to develop crop models.

Application and Validation of an Optimal Analytical Method using QuEChERS for the determination of Tolpyralate in Agricultural Products (QuEChERS법을 활용한 농산물 중 제초제 Tolpyralate의 최적 분석법 선발 및 검증)

  • Lee, Han Sol;Park, Ji-Su;Lee, Su Jung;Shin, Hye-Sun;Kim, Ji-Young;Yun, Sang Soon;Jung, Yong-hyun;Oh, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.3
    • /
    • pp.246-252
    • /
    • 2020
  • BACKGROUND: Pesticides are broadly used to control weeds and pests, and the residues remaining in crops are managed in accordance with the MRLs (maximum residue limits). Therefore, an analytical method is required to quantify the residues, and we conducted a series of analyses to select and validate the quick and simple analytical method for tolpyralate in five agricultural products using QuEChERS (quick, easy, cheap, effective, rugged and safe) method and LC-MS/MS (liquid chromatography-tandem mass spectrometry). METHODS AND RESULTS: The agricultural samples were extracted with acetonitrile followed by addition of anhydrous magnesium sulfate, sodium chloride, disodium hydrogencitrate sesquihydrate and trisodium citrate dihydrate. After shaking and centrifugation, purification was performed with d-SPE (dispersive-solid phase extraction) sorbents. To validate the optimized method, its selectivity, linearity, LOD (limit of detection), LOQ (limit of quantitation), accuracy, repeatability, and reproducibility from the inter-laboratory analyses were considered. LOQ of the analytical method was 0.01 mg/kg at five agricultural products and the linearity of matrix-matched calibration were good at seven concentration levels, from 0.0025 to 0.25 mg/L (R2≥0.9980). Mean recoveries at three spiking levels (n=5) were in the range of 85.2~112.4% with associated relative standard deviation values less than 6.2%, and the coefficient of variation between the two laboratories was also below 13%. All optimized results were validated according to the criteria ranges requested in the Codex Alimentarius Commission (CAC) and Ministry of Food and Drug Safety (MFDS) guidelines. CONCLUSION: In conclusion, we suggest that the selected and validated method could serve as a basic data for detecting tolpyralate residue in imported and domestic agricultural products.

Conceptual Source Design and Dosimetric Feasibility Study for Intravascular Treatment: A Proposal for Intensity Modulated Brachytherapy (혈관내 방사선치료를 위한 이론적 선원 설계 및 선량적 관점에서의 적합성 연구: 출력변조를 이용한 근접치료에 대한 제안)

  • Kim Siyong;Han Eunyoung;Palta Jatinder R.;Ha Sung W.
    • Radiation Oncology Journal
    • /
    • v.21 no.2
    • /
    • pp.158-166
    • /
    • 2003
  • Purpose: To propose a conceptual design of a novel source for intensity modulated brachytherapy. Materials and Methods: The source design incorporates both radioactive and shielding materials (stainless steel or tungsten), to provide an asymmetric dose intensity in the azimuthal direction. The intensity modulated intravascular brachytherapy was performed by combining a series of dwell positions and times, distributed along the azimuthal coordinates. Two simple designs for the beta-emitting sources, with similar physical dimensions to a $^{90}Sr/Y$ Novoste Beat-Cath source, were considered in the dosimetric feasibility study. In the first design, the radioactive and materials each occupy half of the cylinder and in the second, the radioactive material occupies only a quater of the cylinder. The radial and azimuthal dose distributions around each source were calculated using the MCNP Monte Carlo code. Results: The preliminary hypothetical simulation and optimization results demonstrated the 87$\%$ difference between the maximum and minimum doses to the lumen wall, due to off-centering of the radiation source, could be reduced to less than 7$\%$ by optimizing the azimuthal dwell positions and times of the partially shielded intravascular brachytherapy sources. Conclusion: The novel brachytherapy source design, and conceptual source delivery system, proposed in this study show promising dosimetric characteristics for the realization of intensity modulated brachytherapy in intravascular treatment. Further development of this concept will center on building a delivery system that can precisely control the angular motion of a radiation source in a small-diameter catheter.

A Rapid and Sensitive Detection of Aflatoxin-producing Fungus Using an Optimized Polymerase Chain Reaction (PCR)

  • Bintvihok, Anong;Treebonmuang, Supitchaya;Srisakwattana, Kitiya;Nuanchun, Wisut;Patthanachai, Koranis;Usawang, Sungworn
    • Toxicological Research
    • /
    • v.32 no.1
    • /
    • pp.81-87
    • /
    • 2016
  • Aflatoxin B1 (AFB1) is produced by Aspergillus flavus growing in feedstuffs. Early detection of maize contamination by aflatoxigenic fungi is advantageous since aflatoxins exert adverse health effects. In this study, we report the development of an optimized conventional PCR for AFB1 detection and a rapid, sensitive and simple screening Real-time PCR (qPCR) with SYBR Green and two pairs of primers targeting the aflR genes which involved aflatoxin biosynthesis. AFB1 contaminated maize samples were divided into three groups by the toxin concentration. Genomic DNA was extracted from those samples. The target genes for A. flavus were tested by conventional PCR and the PCR products were analyzed by electrophoresis. A conventional PCR was carried out as nested PCR to verify the gene amplicon sizes. PCR-RFLP patterns, obtained with Hinc II and Pvu II enzyme analysis showed the differences to distinguish aflatoxin-producing fungi. However, they are not quantitative and need a separation of the products on gel and their visualization under UV light. On the other hand, qPCR facilitates the monitoring of the reaction as it progresses. It does not require post-PCR handling, which reduces the risk of cross-contamination and handling errors. It results in a much faster throughout. We found that the optimal primer annealing temperature was $65^{\circ}C$. The optimized template and primer concentration were $1.5{\mu}L\;(50ng/{\mu}L)$ and $3{\mu}L\;(10{\mu}M/{\mu}L)$ respectively. SYBR Green qPCR of four genes demonstrated amplification curves and melting peaks for tub1, afIM, afIR, and afID genes are at $88.0^{\circ}C$, $87.5^{\circ}C$, $83.5^{\circ}C$, and $89.5^{\circ}C$ respectively. Consequently, it was found that the four primers had elevated annealing temperatures, nevertheless it is desirable since it enhances the DNA binding specificity of the dye. New qPCR protocol could be employed for the determination of aflatoxin content in feedstuff samples.

A Comparative Study on the Herbage Utilization for Mixture Types by Korean Native Goats (한국재래산양에 의한 혼파유형별 목초의 이용성 비교 연구)

  • Lee, In-Duk;Lee, Hyung-Suk
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.3
    • /
    • pp.185-190
    • /
    • 2005
  • The objective of this experiment was to compare the dry matter intake, nutrients digestibility and nitrogen and energy utilization of herbages from mixtures types; conventional mixtures(orchardgrass 50+ tall fescue 20+perennial ryegrass 10+Kentucky bluegrass 10+white clover $10\%$), complex mixtures (orchardgrass 40+ tall fescue 20+perennial ryegrass 10+Kentucky bluegrass 10+redtop 10+alfalfa 5+red clover $5\%$) and simple mixtures(orchardgrass 80+red clover $20\%$) by Korean native goats. This experiment was conducted by total collection method in laboratory, 2000. The voluntary DM intake per body weight was slightly higher f3r complex mixtures (30.2g) than those of other mixtures. but there was no significant difference. The digestibility of dry matter and cellular constituents were slightly higher for complex mixtures than those of other mixtures (p<0.05), but NDF and ADF digestibilities did not differ among mixtures. The retained nitrogen percent (apparently biological value) was slightly higher fer complex mixtures $(55.1\%)$ than those of other mixtures, but there was no significant difference among mixtures. Apparently retained digestible energy was slightly higher for complex mixtures $(60.2\%)$ than those of other mixtures (p<0.05). Based on the results, the nitrogen and energy utilization of herbage by Korean native goats were slightly higher for complex mixtures than those of other mixtures.

Seasonal Trend of Elevation Effect on Daily Air Temperature in Korea (일별 국지기온 결정에 미치는 관측지점 표고영향의 계절변동)

  • 윤진일;최재연;안재훈
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.2
    • /
    • pp.96-104
    • /
    • 2001
  • Usage of ecosystem models has been extended to landscape scales for understanding the effects of environmental factors on natural and agro-ecosystems and for serving as their management decision tools. Accurate prediction of spatial variation in daily temperature is required for most ecosystem models to be applied to landscape scales. There are relatively few empirical evaluations of landscape-scale temperature prediction techniques in mountainous terrain such as Korean Peninsula. We derived a periodic function of seasonal lapse rate fluctuation from analysis of elevation effects on daily temperatures. Observed daily maximum and minimum temperature data at 63 standard stations in 1999 were regressed to the latitude, longitude, distance from the nearest coastline and altitude of the stations, and the optimum models with $r^2$ of 0.65 and above were selected. Partial regression coefficients for the altitude variable were plotted against day of year, and a numerical formula was determined for simulating the seasonal trend of daily lapse rate, i.e., partial regression coefficients. The formula in conjunction with an inverse distance weighted interpolation scheme was applied to predict daily temperatures at 267 sites, where observation data are available, on randomly selected dates for winter, spring and summer in 2000. The estimation errors were smaller and more consistent than the inverse distance weighting plus mean annual lapse rate scheme. We conclude that this method is simple and accurate enough to be used as an operational temperature interpolation scheme at landscape scale in Korea and should be applicable to elsewhere.

  • PDF

Harmonic Reduction Scheme By the Advanced Auxiliary Voltage Supply (개선된 보조전원장치에 의한 고조파 저감대책)

  • Yoon, Doo-O;Yoon, Kyoung-Kuk;Kim, Sung-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.759-769
    • /
    • 2015
  • Diode rectifiers are very popular in industry. However, they include large low-order harmonics in the input current and do not satisfy harmonic current content restrictions. To reduce the harmonics to the power system, several methods have been introduced. It is heavy and expensive solution to use passive filters as the solution for high power application. Another solution for the harmonic filter is utilization of active filter, but it is too expensive solution. Diode rectifiers with configurations using switching device have been introduced, but they are very complicated. The combined 12-pulse diode rectifier with the square auxiliary voltage supply has been introduced. It has the advantages that auxiliary circuit is simple and inexpensive compared to other strategies. The advanced auxiliary voltage supply in this thesis is presented as a new solution. When the square auxiliary voltage supply applied, the improvement of THD is 6~60[%] in whole load range. But when the advanced auxiliary voltage supply applied, it shows stable and excellent reduction effect of THD as 57~71[%]. Especially, for the case with 10[%] load factor, reduction effect of THD has little effect as 6[%] in the case of inserting a square auxiliary voltage supply. But when the proposed new solution applied, reduction effect has excellent effect as 71[%]. Theoretical analysis of the combined 12-pulse diode rectifier with the advanced auxiliary voltage supply is presented and control methods of the auxiliary supply is proposed. The reduction in the input current harmonics is verified by simulation using software PSIM.

Surface-modified Nanoparticle Additives for Wear Resistant Water-based Coatings for Galvanized Steel Plates

  • Becker-Willinger, Carsten;Heppe, Gisela;Opsoelder, Michael;Veith, H.C. Michael;Cho, Jae-Dong;Lee, Jae-Ryung
    • Corrosion Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.147-152
    • /
    • 2010
  • Conventional paints for conversion coating applications in steel production derived mainly from water-based polymer dispersions containing several additives actually show good general performance, but suffer from poor scratch and abrasion resistance during use. The reason for this is because the relatively soft organic binder matrix dominates the mechanical surface properties. In order to maintain the high quality and decorative function of coated steel sheets, the mechanical performance of the surface needs to be improved significantly. In fact the wear resistance should be enhanced without affecting the optical appearance of the coatings by using appropriate nanoparticulate additives. In this direction, nanocomposite coating compositions (Nanomer$^{(R)}$) have been derived from water-based polymer dispersions with an increasing amount of surface-modified nanoparticles in aqueous dispersion in order to monitor the effect of degree of filling with rigid nanoparticles. The surface of nanoparticles has been modified for optimum compatibility with the polymer matrix in order to achieve homogeneous nanoparticle dispersion over the matrix. This approach has been extended in such a way that a more expanded hybrid network has been condensed on the nanoparticle surface by a hydrolytic condensation reaction in addition to the quasi-monolayer type small molecular surface modification. It was expected that this additional modification will lead to more intensive cross-linking in coating systems resulting in further improved scratch-resistance compared to simple addition of nanoparticles with quasi-monolayer surface modification. The resulting compositions have been coated on zinc-galvanized steel and cured. The wear resistance and the corrosion protection of the modified coating systems have been tested in dependence on the compositional change, the type of surface modification as well as the mixing conditions with different shear forces. It has been found out that for loading levels up to 50 wt.-% nanoparticles, the mechanical wear resistance remains almost unaffected compared to the unmodified resin. In addition, the corrosion resistance remained unaffected even after $180^{\circ}$ bending test showing that the flexibility of coating was not decreased by nanoparticle addition. Electron microscopy showed that the inorganic nanoparticles do not penetrate into the organic resin droplets during the mixing process but rather formed agglomerates outside the polymer droplet phase resulting in quite moderate cross linking while curing, because of viscosity. The proposed mechanisms of composite formation and cross linking could explain the poor effect regarding improvement of mechanical wear resistance and help to set up new synthesis strategies for improved nanocomposite morphologies, which should provide increased wear resistance.

A Study on Protection of Stainless Steel Substrate against Corrosion in Molten Carbonate by Formation of Aluminum Diffusive Layer Using a Slurry Coating Method (슬러리 코팅법에 의한 스테인레스 스틸 표면에서의 알루미늄 확산막 제조 및 용융탄산염 내에서의 내식 특성 연구)

  • Nam S. W.;Hwang E. R.;Magtanyuk A. P.;Hong M. Z.;Lim T. H.;Oh I. -H.;Hong S. -A.
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.136-140
    • /
    • 2000
  • A stainless steel separator for a molten carbonate fuel cell is usually coated with aluminum diffusive layer to protect its surface against corrosion by the molten carbonate at high temperatures. In this study, a relatively simple method was devised to form the aluminum diffusive layer on a stainless steel substrate. Slurry coating of aluminum on the substrate followed by heat treatment under reducing atmosphere at $650\~800^{\circ}C$ produced the aluminum diffusive layer of $25\~80{\mu}m$ thickness. The thickness of aluminum diffusive layer increased with increasing the temperature or duration of the heat-treatment. The corrosion resistance against molten carbonate under oxidizing atmosphere was significantly improved by aluminum diffusive layer formed by the sluny painting and heat treatment method. Moreover, the sample prepared in this study showed corrosion behavior similar to the sample with aluminum diffusive layer prepared by ion vapor deposition and heat treatment.

Electrochemical Detection of Uric Acid using Three Osmium Hydrogels (세개의 오스뮴 고분자를 이용한 요산의 전기화학적 측정방법)

  • Jeon, Won-Yong;Choi, Young-Bong
    • Journal of the Korean Electrochemical Society
    • /
    • v.19 no.2
    • /
    • pp.29-38
    • /
    • 2016
  • Screen printed carbon electrodes (SPCEs) with immobilized osmium-based hydrogel redox polymer, uricase and PEGDGE can be used to apply uric acid electrochemical detecting. The osmium redox complexes were synthesized by the coordinating pyridine group having different functional group at 4-position with osmium compounds. The synthesized poly-osmium hydrogel complexes are described as PAA-PVI-$[Os(dCl-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$, PAA-PVI-$[Os(dmo-bpy)_2Cl]^{+/2+}$. The different concentrations of uric acid were measured by cyclic voltammetry technique using enzyme-immobilized SPCEs. The prepared SPCEs using PAA-PVI-$[Os(dme-bpy)_2Cl]^{+/2+}$ showed no interference from common physiologic interferents such as ascorbic acid (AA) or glucose. The resulting electrical currents at 0.33 V vs. Ag/AgCl displayed a good linear response with uric acid concentrations from 1.0 to 5.0 mM. Therefore, this approach allowed the development of a simple, point of care in the medical field, disposable electrochemical uric acid biosensor.