• Title/Summary/Keyword: R-curve behavior

Search Result 157, Processing Time 0.027 seconds

Fracture Toughness and Crack Growth Resistance of the Fine Grain Isotropic Graphite

  • Kim, Dae-Jong;Oh, Seung-Jin;Jang, Chang-Heui;Kim, In-Sup;Chi, Se-Hwan
    • Carbon letters
    • /
    • v.7 no.1
    • /
    • pp.19-26
    • /
    • 2006
  • Three point bending tests of single edge notched beam (SENB) specimens were carried out to evaluate the fracture behavior of the fine-grain isotropic nuclear grade graphite, IG-11. To measure the crack initiation point and the subsequent crack growth, the direct current potential drop (DCPD) method and a traveling microscope were used. The effects of test variables like initial crack length, specimen thickness, notch type and loading rate on the measured fracture toughness, $K_Q$, were investigated. Based on the test results, the ranges of the test variables to measure the reliable fracture toughness value were proposed. During the crack growth, the rising R-curve behavior was observed in IG-11 graphite when the superficial crack length measured on the specimen surface was used. The increase of crack growth resistance was discussed in terms of crack bridging, crack meandering, crack branching, microcracking and crack deflection, which increase the surface energy and friction force.

  • PDF

Visualization of High Speed fracture Behavior in Y-TZP by using Mechano-luminescence (압광 재료를 이용한 구조용 Y-TZP 소재의 고속 파괴현상 가시화 연구)

  • Kim, J.S.;Sohn, K.S.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.348-353
    • /
    • 2007
  • The propagation of a macro-scale crack and the accompanying transformation zone around it was visualized in an Y-TZP ceramic using a mechano-luminescence (ML) technique. The technique allows realistic fractures that take place catastrophically in actual applications to be realistically stimulated. Unlike conventional quasi-static R-curves, the ML technique on a relatively fast time frame permitted a so-called quasi-dynamic R-curve in the crack speed range from 50 to 140 m/sec. to be measured. Effective toughening then commenced and the applied stress intensity factor increased to 27 $MPa{\sqrt{m}}$. The transformation zone height obtained from the ML observations was in good agreement with that predicted by the Marshall model, and coincided with previously observed results for quasi-static conditions by Raman spectorscopy and x-ray analysis.

Long-term Creep Strain-Time Curve Modeling of Alloy 617 for a VHTR Intermediate Heat Exchanger (초고온가스로 중간 열교환기용 Alloy 617의 장시간 크리프 변형률-시간 곡선 모델링)

  • Kim, Woo-Gon;Yin, Song-Nam;Kim, Yong-Wan
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.10
    • /
    • pp.613-620
    • /
    • 2009
  • The Kachanov-Rabotnov (K-R) creep model was proposed to accurately model the long-term creep curves above $10^5$ hours of Alloy 617. To this end, a series of creep data was obtained from creep tests conducted under different stress levels at $950^{\circ}C$. Using these data, the creep constants used in the K-R model and the modified K-R model were determined by a nonlinear least square fitting (NLSF) method, respectively. The K-R model yielded poor correspondence with the experimental curves, but the modified K-R model provided good agreement with the curves. Log-log plots of ${\varepsilon}^{\ast}$-stress and ${\varepsilon}^{\ast}$-time to rupture showed good linear relationships. Constants in the modified K-R model were obtained as ${\lambda}$=2.78, and $k=1.24$, and they showed behavior close to stress independency. Using these constants, long-term creep curves above $10^5$ hours obtained from short-term creep data can be modeled by implementing the modified K-R model.

Study on Design Principle of Reverse Curve in Superhighway (Superhighway 연속곡선의 설계 방침에 대한 연구)

  • Kim, Sungkyu;Kim, Sangyoup;Choi, Jaisung;Min, Dongchan;Jang, Youngsoo;Shin, Joonsoo
    • International Journal of Highway Engineering
    • /
    • v.16 no.6
    • /
    • pp.169-179
    • /
    • 2014
  • PURPOSES : This study is to conduct the research on the design principle for the driver's safety and comfort in installing consecutive curves of superhighway. METHODS : Superhighway does not currently exist in domestic area. Thus, this study is conducted by collecting driving behavior usage of 30 people who are involved in the members of the virtual driving simulation. By identifying the distribution characteristics of each scenario in ANOVA & Tukey Test, the distribution are categorized into three groups. RESULTS : In the case of Group A in Section 3 (R2 entry part), lane departure exceeds the safety standard, which means to be risky condition. And then in the case of Group B and C, the lane departure values applying theoretical formula was evenly distributed compared to the proven values. CONCLUSIONS : Based on the result, the continuous curve design principles at superhighway should follow three standards as follow. First, an additional linear part needs to be inserted between two curves. Second, what if inserting the linear part is difficult, it would be better to insert a curve more than 2,000m. Third, R1/R2 ratio should not be over two. This design primarily aims to the safety of the operator. Such road alignment also meets the expectations of drivers, thus, it may help drivers to be compatible and amenable while driving continuous curve in superhighway.

Creep Characterization of Type 316LN and HT-9 Stainless Steels by the K-R Creep Damage Model

  • Kim, U-Gon;Kim, Seong-Ho;Ryu, U-Seok
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.11
    • /
    • pp.1463-1471
    • /
    • 2001
  • The Kachanov and Rabotnov (K-R) creep damage model was interpreted and applied to type 316LN and HT-9 stainless steels. Seven creep constants of the model, A, B, $textsc{k}$, m, λ, ${\gamma}$, and q were determine d for type 316LN stainless steel. In order to quantify a damage parameter, the cavity was interruptedly traced during creep for measuring cavity area to be reflected into the damage equation. For type 316LN stainless steel, λ= $\varepsilon$R/$\varepsilon$* and λf=$\varepsilon$/$\varepsilon$R were 3.1 and increased with creep strain. The creep curve with λ=3.1 depleted well the experimental data to the full lifetime and its damage curve showed a good agreement when r=24. However for the HT-9 stainless steel, the values of λ and λf were different as λ=6.2 and λf=8.5, and their K-R creep curves did not agree with the experimental data. This mismatch in the HT-9 steel was due to the ductile fracture by softening of materials rather than the brittle fracture by cavity growth. The differences of the values in the above steels were attributed to creep ductilities at the secondary and the tertiary creep stages.

  • PDF

Experimental and numerical investigations on the ratcheting characteristics of cylindrical shell under cyclic axial loading

  • Shariati, M.;Hatami, H.;Torabi, H.;Epakchi, H.R.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.6
    • /
    • pp.753-762
    • /
    • 2012
  • The ratcheting characteristics of cylindrical shell under cyclic axial loading are investigated. The specimens are subjected to stress-controlled cycling with non-zero mean stress, which causes the accumulation of plastic strain or ratcheting behavior in continuous cycles. Also, cylindrical shell shows softening behavior under symmetric axial strain-controlled loading and due to the localized buckling, which occurs in the compressive stress-strain curve of the shell; it has more residual plastic strain in comparison to the tensile stress-strain hysteresis curve. The numerical analysis was carried out by ABAQUS software using hardening models. The nonlinear isotropic/kinematic hardening model accurately simulates the ratcheting behavior of shell. Although hardening models are incapable of simulating the softening behavior of the shell, this model analyzes the softening behavior well. Moreover, the model calculates the residual plastic strain close to the experimental data. Experimental tests were performed using an INSTRON 8802 servo-hydraulic machine. Simulations show good agreement between numerical and experimental results. The results reveal that the rate of plastic strain accumulation increases for the first few cycles and then reduces in the subsequent cycles. This reduction is more rapid for numerical results in comparison to experiments.

ESTIMATION OF DUCTILE FRACTURE BEHAVIOR INCORPORATING MATERIAL ANISOTROPY

  • Choi, Shin-Beom;Lee, Dock-Jin;Jeong, Jae-Uk;Chang, Yoon-Suk;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.44 no.7
    • /
    • pp.791-798
    • /
    • 2012
  • Since standardized fracture test specimens cannot be easily extracted from in-service components, several alternative fracture toughness test methods have been proposed to characterize the deformation and fracture resistance of materials. One of the more promising alternatives is the local approach employing the SP(Small Punch) testing technique. However, this process has several limitations such as a lack of anisotropic yield potential and tediousness in the damage parameter calibration process. The present paper investigates estimation of ductile fracture resistance(J-R) curve by FE(Finite Element) analyses using an anisotropic damage model and enhanced calibration procedure. In this context, specific tensile tests to quantify plastic strain ratios were carried out and SP test data were obtained from the previous research. Also, damage parameters constituting the Gurson-Tvergaard-Needleman model in conjunction with Hill's 48 yield criterion were calibrated for a typical nuclear reactor material through a genetic algorithm. Finally, the J-R curve of a standard compact tension specimen was predicted by further detailed FE analyses employing the calibrated damage parameters. It showed a lower fracture resistance of the specimen material than that based on the isotropic yield criterion. Therefore, a more realistic J-R curve of a reactor material can be obtained effectively from the proposed methodology by taking into account a reduced load-carrying capacity due to anisotropy.

Determination of CTOD & CTOA Curve for Structural Steel Hot-Rolled Thin Plates (일반 구조용강 열간압연 박판에 대한 CTOD와 CTOA 곡선 결정)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.729-732
    • /
    • 2003
  • The K-R design curve is an engineering method of linear-elastic fracture analysis under plane-stress loading conditions. By the way, linear-elastic fracture mechanics (LEFM) is valid only as long as nonlinear material deformation is confined to a small region surrounding the crack tip. Like general steels, it is virtually impossible to characterize the fracture behavior with LEFM, in many materials. Critical values of J contour integral or crack tip opening displacement (CTOD) give nearly size independent measures of fracture toughness, even for relatively large amounts of crack tip plasticity. Furthermore, the crack tip opening displacement is the only parameter that can be directly measured in the fracture test. On the other. the crack tip opening angle (CTOA) test is similar to CTOD experimentally. Moreover, the test is easier to measure the fracture toughness than other method. The shape of the CTOA curve depends on material fracture behavior and, on the opening configuration of the cracked structure. CTOA parameter describes crack tip conditions in elastic-plastic materials, and it can be used as a fracture criterion effectively. In this paper, CTOA test is performed for steel JS-SS400 hot-rolled thin plates under plane-stress loading conditions. Special experimental apparatuses are used to prevent specimens from buckling and to measure crack tip opening angle for thin compact tension (CT) specimens.

  • PDF

Cracking Analysis of Reinforced Concrete Tension Members with Concrete Fracture Mechanics (콘크리트 파괴역학을 이용한 철근콘크리트 인장부재의 균열성장 해석)

  • 홍창우;윤경구;양성철
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.3-12
    • /
    • 2000
  • A fracture energy concept proposed by Ouyang and Shah's fracture mechanics approach was used to predict cracking of reinforced concrete members subjected to tension. In this approach, fracture properties in plain concrete which incorporate the presence of the fracture process zone are first determined from the generalized size effect method, then fracture energy required for crack propagation with the same dimension and material properties are evaluated using an R-curve. Subsequently taking into account the material properties in Ouyang and Shah's approach, a theoretical analysis to predict the mechanical behavior of reinforced concrete members subjected to tension was performed and compared to observed experimental results. It is seen that the predicted average crack spacing curves agree well with the experimental results, whereas the analytical method seems to predict lower values for this study. The analytical approach predicts well responses of stress-strain curves before and after the first crack is formed. It is concluded from this study that a fracture energy concept based on the R-curve and the generalized size effect method is a rational approach to predict cracking of reinforced concrete members subjected to tension.