• 제목/요약/키워드: R-Learning Environment

검색결과 182건 처리시간 0.032초

DEVELOPMENT OF A VIRTUAL FORGING FACTORY FRAMEWORK

  • Kao Yung-Chou;Sung Wen-Hsu;Huang Wei-Shin
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 The 8th Asian Symposium on Precision Forging ASPF
    • /
    • pp.115-122
    • /
    • 2003
  • This paper presents the development of a virtual forging factory framework. The technologies of virtual reality and relational database had been integrated in the developed framework using Microsoft $Windows^{(R)}$ programming as the main technique so as to emulate a physical forging factory. The developed virtual forging factory consists of forging cells and a forging cell is comprised of forging machine, forging die, and forging operations forming a forging production line. The technology of virtual reality had been successfully adopted in the production simulation of manufacturing such as CNC and robotics. However, the application in virtual forging factory seems to have not been studied yet. Potential application of a virtual forging factory can be beneficial to (1) computer aided instruction, (2) shorten the learning curve of a novice, (3) remote diagnosis and monitoring when remote monitoring and control technology and signal inspection is considered, (4) improve adverse forging environment when remote forging technology is applied, and (5) virtual reality application.

  • PDF

Essential technical and intellectual abilities for autonomous mobile service medical robots

  • Rogatkin, Dmitry A.;Velikanov, Evgeniy V.
    • Advances in robotics research
    • /
    • 제2권1호
    • /
    • pp.59-68
    • /
    • 2018
  • Autonomous mobile service medical robots (AMSMRs) are one of the promising developments in contemporary medical robotics. In this study, we consider the essential technical and intellectual abilities needed by AMSMRs. Based on expert analysis of the behavior exhibited by AMSMRs in clinics under basic scenarios, these robots can be classified as intellectual dynamic systems acting according to a situation in a multi-object and multi-agent environment. An AMSMR should identify different objects that define the presented territory (rooms and paths), different objects between and inside rooms (doors, tables, and beds, among others), and other robots. They should also identify the means for interacting with these objects, people and their speech, different information for communication, and small objects for transportation. These are included in the minimum set required to form the internal world model in an AMSMR. Recognizing door handles and opening doors are some of the most difficult problems for contemporary AMSMRs. The ability to recognize the meaning of human speech and actions and to assist them effectively are other problems that need solutions. These unresolved issues indicate that AMSMRs will need to pass through some learning and training programs before starting real work in hospitals.

Promoting the Quarry Workers' Hazard Identification Through Formal and Informal Safety Training

  • Bae, Hwangbo;Simmons, Denise R.;Polmear, Madeline
    • Safety and Health at Work
    • /
    • 제12권3호
    • /
    • pp.317-323
    • /
    • 2021
  • Background: The surface mining industry has one of the highest fatality rates among private industries in the United States. Despite recent decreases in the fatality rates of comparable industries, the fatality rate in the surface mining industry has increased. Meanwhile, a lack of safety research in surface mining has hindered efforts to improve safety strategies in the surface mining workplace. Method: This study examined quarry workers' hazard identification skills by conducting a case study of a surface mining facility in the Mid-Atlantic region of the United States. Semistructured interviews were conducted with eight quarry workers who were employed at the mine facility. In addition to the interviews, data were collected through field notes, notes from an expert meeting with safety managers, and site photographs to explore quarry workers' safety behaviors in the workplace. Results: The results showed that quarry workers identified hazards and improved their safety performance by translating safety knowledge learned from training into practice, acquiring hands-on work experience, learning from coworkers, and sharing responsibilities among team members. Conclusion: This study contributes to understanding quarry workers' safe performance beyond what they have learned in safety training to include their interaction with other workers and hand-on experience in the workplace. This study informs practitioners in the surface mining industry to build a safe work environment as they design effective safety programs for employees.

농업에서의 ICT와 인공지능을 활용한 연구 개발 현황 조사 (A Survey of The Status of R&D Using ICT and Artificial Intelligence in Agriculture )

  • 강선호
    • 반도체디스플레이기술학회지
    • /
    • 제22권1호
    • /
    • pp.104-112
    • /
    • 2023
  • Agriculture plays an industrial and economic role, as well as an environmental and ecological conservation role, group harmony and the inheritance of traditional culture. However, no matter how advanced the industry is, the basic food necessary for human life can only be produced through the photosynthesis of plants with natural resources such as the sun, water, and air. The Food and Agriculture Organization of the United Nations (FAO) predicts that the world's population will increase by another 2 billion people by 2050, and it faces a myriad of complex and diverse factors to consider, including climate change, food security concerns, and global ecosystems and political factors. In particular, in order to solve problems such as increasing productivity and production of agricultural products, improving quality, and saving energy, it is difficult to solve them with traditional farming methods. Recently, with the wind of the 4th industrial revolution, ICT convergence technology and artificial intelligence have been rapidly developing in many fields, but it is also true that the application of new technologies is somewhat delayed due to the unique characteristics of agriculture. However, in recent years, as ICT and artificial intelligence utilization technologies have been developed and applied by many researchers, a revolution is also taking place in agriculture. This paper summarizes the current state of research so far in four categories of agriculture, namely crop cultivation environment management, soil management, pest management, and irrigation management, and smart farm research data that has recently been actively developed around the world.

  • PDF

Malwares Attack Detection Using Ensemble Deep Restricted Boltzmann Machine

  • K. Janani;R. Gunasundari
    • International Journal of Computer Science & Network Security
    • /
    • 제24권5호
    • /
    • pp.64-72
    • /
    • 2024
  • In recent times cyber attackers can use Artificial Intelligence (AI) to boost the sophistication and scope of attacks. On the defense side, AI is used to enhance defense plans, to boost the robustness, flexibility, and efficiency of defense systems, which means adapting to environmental changes to reduce impacts. With increased developments in the field of information and communication technologies, various exploits occur as a danger sign to cyber security and these exploitations are changing rapidly. Cyber criminals use new, sophisticated tactics to boost their attack speed and size. Consequently, there is a need for more flexible, adaptable and strong cyber defense systems that can identify a wide range of threats in real-time. In recent years, the adoption of AI approaches has increased and maintained a vital role in the detection and prevention of cyber threats. In this paper, an Ensemble Deep Restricted Boltzmann Machine (EDRBM) is developed for the classification of cybersecurity threats in case of a large-scale network environment. The EDRBM acts as a classification model that enables the classification of malicious flowsets from the largescale network. The simulation is conducted to test the efficacy of the proposed EDRBM under various malware attacks. The simulation results show that the proposed method achieves higher classification rate in classifying the malware in the flowsets i.e., malicious flowsets than other methods.

Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system

  • Aman Kumar;Harish Chandra Arora;Nishant Raj Kapoor;Denise-Penelope N. Kontoni;Krishna Kumar;Hashem Jahangir;Bharat Bhushan
    • Computers and Concrete
    • /
    • 제32권2호
    • /
    • pp.119-138
    • /
    • 2023
  • Concrete carbonation is a prevalent phenomenon that leads to steel reinforcement corrosion in reinforced concrete (RC) structures, thereby decreasing their service life as well as durability. The process of carbonation results in a lower pH level of concrete, resulting in an acidic environment with a pH value below 12. This acidic environment initiates and accelerates the corrosion of steel reinforcement in concrete, rendering it more susceptible to damage and ultimately weakening the overall structural integrity of the RC system. Lower pH values might cause damage to the protective coating of steel, also known as the passive film, thus speeding up the process of corrosion. It is essential to estimate the carbonation factor to reduce the deterioration in concrete structures. A lot of work has gone into developing a carbonation model that is precise and efficient that takes both internal and external factors into account. This study presents an ML-based adaptive-neuro fuzzy inference system (ANFIS) approach to predict the carbonation depth of fly ash (FA)-based concrete structures. Cement content, FA, water-cement ratio, relative humidity, duration, and CO2 level have been used as input parameters to develop the ANFIS model. Six performance indices have been used for finding the accuracy of the developed model and two analytical models. The outcome of the ANFIS model has also been compared with the other models used in this study. The prediction results show that the ANFIS model outperforms analytical models with R-value, MAE, RMSE, and Nash-Sutcliffe efficiency index values of 0.9951, 0.7255 mm, 1.2346 mm, and 0.9957, respectively. Surface plots and sensitivity analysis have also been performed to identify the repercussion of individual features on the carbonation depth of FA-based concrete structures. The developed ANFIS-based model is simple, easy to use, and cost-effective with good accuracy as compared to existing models.

간호대학생이 지각한 임상실습현장지도자의 돌봄에 대한 한국어판 측정도구의 타당도와 신뢰도 분석 (Validity and Reliability of a Korean version of the Nursing Students' Perception of Instructor Caring (K-NSPIC))

  • 이신애;박효정
    • 한국산학기술학회논문지
    • /
    • 제19권12호
    • /
    • pp.218-226
    • /
    • 2018
  • 본 연구는 국내 간호대학생을 대상으로 Wade와 Kasper가 개발한 임상실습현장지도자의 돌봄에 대한 측정도구의 타당도와 신뢰도를 검증하기 위하여 시행되었다. D 광역시 3개 대학교 간호학과 3~4학년에 재학 중인 간호대학생 219명을 대상으로 2018년 6월 04일에서 6월 20일까지 자료 수집을 하였다. 자료 분석은 SPSS 21.0과 AMOS 21.0 프로그램을 활용하여 타당도와 신뢰도 검증을 실시하였다. varimax 직각 회전을 이용한 탐색적 요인분석을 시행한 결과, 총 27문항 5개 확인되었으며 존중하는 배려, 돌봄을 통한 신뢰, 통제와 유연성, 지지적인 교육환경, 삶의 의미에 대한 공감으로 구분되었다. 동시타당도 검정 결과, 임상실습교육환경 측정도구의 상관관계에서 r=.64 (p<.001)로 나타나 타당도가 있는 도구임이 확인되었다. 최종 도구의 Cronbach's ${\alpha}$는 .88이었고, 각 요인별 Cronbach's ${\alpha}$는 .91, .86, .80, .76, .85로 나타나 신뢰도가 높음을 확인하였다. 본 연구에서 검증된 한국어판 NSPIC 도구는 임상실습현장지도자의 돌봄 역량을 객관적으로 평가하기에 유용한 도구로서 적용가능성을 제시하였다는 것에 의의가 있다. 또한 본 연구는 임상실습현장지도자의 돌봄 역량을 향상시키기 위한 프로그램을 개발하는 데 도움을 줄 것으로 기대한다.

다변량 지구과학 데이터와 가우시안 혼합 모델을 이용한 공간 분포 추정 (Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data)

  • 김호림;유순영;윤성택;김경호;이군택;이정호;허철호;류동우
    • 자원환경지질
    • /
    • 제55권4호
    • /
    • pp.353-366
    • /
    • 2022
  • 지구과학 데이터(지오데이터)의 공간 이질성, 희소성 및 고차원성으로 인해 공간 분포 추정에 어려움이 있다. 따라서 지구과학의 많은 응용 분야에서 지오데이터의 고유 특성을 고려할 수 있는 공간 추정 기법이 필요하다. 본 연구에서는 기계 학습 알고리즘 중 하나인 가우시안 혼합 모델(Gaussian Mixture Model; GMM)을 이용하여 공간 예측 방법을 제공하고자 하였다. 제안된 기법의 성능을 검증하기 위해, 옛 제련소 부지에서 휴대용 X선 형광분석기(PXRF) 및 유도결합플라즈마-원자방출분광법(ICP-AES)을 이용하여 분석된 토양 농도 자료를 활용하였다. ICP-AES를 이용해 분석된 As와 Pb를 주변수로 하고, 나머지 자료는 보조변수로 활용하였다. 다차원의 보조변수 중 중요 변수를 선별하기 위해 랜덤포레스트 기반의 변수선택법을 적용하였다. ICP-AES 및 PXRF를 통해 구축된 다변량 데이터를 사용한 GMM의 결과를 단변량 및 이변량 데이터를 사용한 정규 크리깅(Ordinary Kriging; OK) 및 정규 공동크리깅(Ordinary Co-Kriging; OCK)의 결과와 비교하였다. GMM의 결과는 OK 및 OCK의 결과보다 낮은 평균 제곱근 편차(RMSE; 비소는 최대 0.11 및 납은 0.33까지 향상)와 높은 상관관계(r; 비소는 최대 0.31 및 납은 0.46까지 향상)를 제공하였다. 이는 GMM을 사용할 경우 토양 오염의 범위 해석의 성능을 향상시킬 수 있음을 지시한다. 본 연구는 다 변량 공간추정 접근법이 복잡하고 이질적인 지질 및 지구 화학자료의 특징을 이해하는 데 효과적으로 적용될 수 있음을 증명하였다.

위성 정보를 활용한 도심 지역 기온자료 지도화를 위한 인공신경망 적용 연구 (A study of artificial neural network for in-situ air temperature mapping using satellite data in urban area)

  • 전현호;정재환;조성근;최민하
    • 한국수자원학회논문집
    • /
    • 제55권11호
    • /
    • pp.855-863
    • /
    • 2022
  • 본 연구에서는 서울시 기온 지상관측 자료의 지도화를 위해 Artificial Neural Network (ANN)을 사용하였다. 지도화를 위한 보조자료로는 MODerate resolution Imaging Spectroradiometer (MODIS) 자료를 사용하였다. ANN 모델 설계를 위해 입력자료와 출력자료 간의 산점도 및 통계분석을 수행하였으며, 기온과의 상관성이 비교적 높게 나타나는 입력자료인 지표면온도, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI)와 시간(위성관측시각, Day of year), 위치(위도, 경도), 데이터 품질(운량)과 관련된 데이터 종류를 분류 및 조합하여 학습을 진행하였다. 기온자료와 상관성이 높은 데이터만으로 학습을 진행하였을 때 상관계수(r)와 Root Mean Squared Error (RMSE)의 평균값이 0.9667, 2.708℃로 우수한 성능을 보였다. 학습에 사용된 데이터의 종류가 추가될수록 더 우수한 학습 결과를 보였으며, 모든 데이터가 활용될 때에는 r과 RMSE의 평균값이 0.9840, 1.883℃로 가장 우수한 성능을 보였다. ANN 모델으로 생성한 서울시 기온 지도에서는 픽셀별 지형적 특성에 적절하게 기온이 산정된 것으로 판단되며, 추후 연구지역 확대 및 위성자료의 다양화를 통해 시단위 및 전국단위 기온 분포 분석 연구가 가능할 것이다.

머신러닝 기반 시설재배 딸기 생산량 예측 연구 (A Study on the Prediction of Strawberry Production in Machine Learning Infrastructure)

  • 오한별;임종현;양승원;조용윤;신창선
    • 스마트미디어저널
    • /
    • 제11권5호
    • /
    • pp.9-16
    • /
    • 2022
  • 최근 농업 현장에서는 빅데이터와 IoT(Internet of Things) 등 기술을 적용하여 디지털농업 스마트팜으로 자동화를 하고 있다. 이러한 스마트팜은 작물의 환경을 측정하고 데이터를 조사하고 가공하여 생산량의 증대와 작물의 품질을 향상하고자 한다. 생산량 예측은 첨단 농업인 스마트팜 디지털 농업에서 중요한 연구로 빅데이터를 활용하여 환경데이터를 분석하고 나아가 생육정보 데이터 품질 관리를 위한 표준화 연구가 필요하다. 본 논문에서는 스마트팜 딸기 농장에서 수집된 환경 및 생산량 데이터를 분석하여 연구하였다. 회귀분석을 기반으로 릿지회귀(Ridge Regression), LightGBM, XGBoost를 사용하여 작물 생산량 예측 모델을 분석하였다. 3가지 모델 중 최적의 모델은 XGBoost로 R2는 82.5%의 설명력을 보였다. 연구 결과 양액흡수량과 환경데이터간의 상관관계를 확인할 수 있었고, 생산량 예측 연구에 대한 유의미한 결과를 얻을 수 있었다. 향후 작물의 생육환경 정보 및 양액의 성분 등 양액흡수량을 연구하여 양액관리를 통해 환경오염 예방 및 양액 절감에 기여할 것으로 기대된다.