• 제목/요약/키워드: R-22 Alternative refrigerant

검색결과 85건 처리시간 0.023초

응축압력 변화에 따른 R407C의 응축특성에 관한 연구 (An Experimental Study on Condensation Characteristics at Various Condensation Pressure of R407C)

  • 전창덕;장경근;김창덕;이진호
    • 설비공학논문집
    • /
    • 제15권3호
    • /
    • pp.230-238
    • /
    • 2003
  • R407C is considered as alternative refrigerant of R22 for air conditioners. Experimental investigation is made to study the condensation heat transfer characteristics of slit fin-tube heat exchanger using alternative refrigerant, R407C. Experiments are carried out at condensation pressure of 2110 kPa and 1943 kPa with the degree of superheat of 1$0^{\circ}C$ and mass flux varying from 150 to 250 kg/$m^2$s for refrigerant side. The inlet air condition is dry bulb temperature of 35$^{\circ}C$, relative humidity of 50% and air velocity varying from 0.8 to 1.6 m/s. Experiments show that pressure drop gets smaller at a higher condensation pressure especially when condensation pressure is raised from 1943 to 2110 kPa. Heat transfer rate gets smaller at a lower condensation pressure in the range of experimental condition.

대체혼합냉매를 사용하는 Lorentz-Meutzner의 이중 증발기 냉동 시스템의 성능에 관한 연구 (A Study of Lorentz-Meutzner's Two Evaporator Refrigeration System Using Alternative Refrigerant Mixtures)

  • 박영무
    • 설비공학논문집
    • /
    • 제4권2호
    • /
    • pp.123-136
    • /
    • 1992
  • A preliminary thermodynamic design model of two-evaporator refrigerator/freezer system is constructed. This system is based on Lorentz-Meutzner cycle using refrigerant mixtures. This model screens alternative refrigerant (R32, R125, R143a, R22, R134a, R152a, R124, R142b, R123) mixtures to select the best performance-giving refrigerant mixtures and its composition for the system. Also, it estimates the effects of cooling temperatures of intercoolers, evaporator's area ratio, cooling load ratio on the performance of the system. The COP of the system ranges from 1.4 to 1.6, which is superior to that of the single evaporator system charged with R12 by 13% to 29%. Among 15 mixtures, R22/R123, R143a/R123, R32/R142b, and R32/R124 (in the order of high COP) are most recommendable. For the case of R22/R123, R22 mass fraction more than 0.5(Load Ratio=1.0) or 0.7(Load Ratio=0.33) is recomended in order to replace R12 without reduction in volumetric capacity when keeping the compressor as the same one. COP has the highest value with X(R22)=0.7 and 0.8, respectively. For the case of R143a/R123, in the similar manner, mass fraction of R143a is more than 0.5 or 0.6 while best performance occurs at X(R143a)=0.8. Higher temperature intercooler is more important for the performance of the system than lower temperature intercooler. The area ratio of evaporators is roughly proportional to load ratio of the evaporators.

  • PDF

세관내 R-22 대체냉매의 응축압력강항에 관한 연구 (The Condensation Pressure Drop of Alternative Refrigerants for R-22 in Small Diameter Tubes)

  • 오후규;손창효;최영석;김기수
    • 대한기계학회논문집B
    • /
    • 제25권9호
    • /
    • pp.1245-1252
    • /
    • 2001
  • The condensation pressure drop for pure refrigerants R-22, R-134a, and a binary refrigerant mixture R-410A flowing in a small diameter tube was investigated. The test section is a counterflow heat exchanger with refrigerant flowing in the inner tube and coolant flowing in the annulus. The test section consists of 1220 [mm] length with horizontal copper tube of 3.38 [mm] outer diameter and 1.77 [mm] inner diameter. The refrigerant mass fluxes ranged from 450 to 1050 [kg/(㎡$.$s)] and the average inlet and outlet qualities were 0.05 and 0.95, respectively. The main experimental results were summarized as follows : In the case of single-phase flow, the pressure drop of R-134a is much higher than that of R-22 and R-410A for the same Reynolds number. The friction factors for small diameter tubes are higher than those predicted by Blasius equation. In the case of two-phase flow, the pressure drop increases with increasing mass flux and decreasing quality. The pressure drop of R-134a is much higher than that of R-22 and R-410A for the same mass flux. Most of correlations proposed in the large diameter tube showed enormous deviations with experimental data. However, the correlation predicted by Honda et al showed relatively good agreement with experimental data for R-134.

R22 대체냉매의 수평원관내 흐름비등 열전달 특성 (Flow Boiling Heat Transfer Characteristics of R22 Alternative Refrigerants in a Horizontal Smooth Tube)

  • 한재웅;김신종;정동수;김영일
    • 설비공학논문집
    • /
    • 제13권4호
    • /
    • pp.242-251
    • /
    • 2001
  • Flow boiling heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured for a horizontal plain tube. The test section was made of a copper tube of 8.8mm inner diameter and 1000mm length respectively. The refrigerant was heated by passing hot water through an annulus surrounding the test section. All tests were performed at a fixed refrigerant saturation temperature of $5^{\circ}C$ with mass fluxes of 100~300 kg/$m^2$,/TEX>s. HTCs were measured by two methods: the direct wall temperature measurement method and the indirect Wilson plot method. Experimental results showed that the Wilson plot method was affected greatly by the external test conditions and yielded inconsistent results. For the mass flux of 100kg/$m^2$,/TEX>s, HTCs were almost constant regardless of the quality for a given refrigerant HTCs of R134a and R407C were similar to those of R22 while those of R410A were 60% higher than those of R22. For the mass fluxes of 200 and 300kg/$m^2$,/TEX>s, HTCs of R407C were almost the same as those of R22, while HTCs of R134a and R410A were 12-13% and 20~23% higher than those of R22 respectively. For pure refrigerant, Shah\`s correlation yielded a good agreement with the measured data both qualitatively and quantitatively.

  • PDF

냉매 R-407c의 수평평골 응축관내 열전달특성에 관한 연구 (Heat transfer characteristics of R - 407C condensing inside smooth horizontal tubes)

  • 오후규;문정욱;노건상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.144-156
    • /
    • 1997
  • Experimental results for forced convection heat transfer of pure refrigerant and nonrefrigerant mixtures during condensing inside horizontal smooth tubes, double pipe heat exchanger of 7.5 mm ID and 4 000 mm long inside tube, are presented. Pure refrigerant R - 22 and R - 407 c, the mixture of R - 32 + R - 125 + R - 134a (23/25/52, wt %) are used as the test fluids. The ranges of parameters are $114.3{\sim}267.1 kg/(m^2 {\cdot} s)$ of mass velocity, <0$\sim$1.0 of quality. The vapor pressure, vapor temperature and tube wall temperature were measured. Using these data, the local and average heat transfer coefficients for the condensation are obtained. At the same given experimental conditions, the condensation heat transfer coefficients for NARMs R - 407c were lower than those for the pure refrigerant of R - 22. Local heat transfer characteristics for R - 407c were different from pure refrigerant R - 22. The condensaheat transfer coefficients for R - 407c and R - 22 increased with mass velocity. Based on the data a prediction method was presented for the calculation of dimensionless average heat transfer coefficient.

  • PDF

대체냉매 공기조화기용 로터리 압축기의 성능향상을 위한 최적 토출계에 관한 실험적 연구 (An Experimental Study on the High Performance Optimal Discharge System of a Rotary Compressor for an Air Conditioner using alternative Refrigerant R410a)

  • 윤영;정진택;민만기
    • 설비공학논문집
    • /
    • 제13권2호
    • /
    • pp.96-105
    • /
    • 2001
  • R410a which is one of HFC refrigerants is being considered to be a promising replacement for R22 widely used in domestic air conditioners. The rolling piston type rotary compressors for R410a have lower energy efficiency than those for R22 because of the high pressure difference between a suction chamber and a discharge chamber in the compression mechanism. in addition, the re-expansion gas loss of the rotary compressor for R410a which occurs a ta clearance volume in a discharge port becomes larger than that for R22 due to high density of R410a refrigerant. Therefore, Pressure-Volume analyses for various design parameters of a discharge system were carried out to improve efficiency of a R410a rotary compressor. The results such as performance dta, over-compression loss, and re-expansion loss were acquired by P-V analyses and analyzed quantitatively. As a conclusion, the optimal specifications of several design parameters of a discharge system were obtained by analyzing P-V diagrams.

  • PDF

낮은 핀관에서 대체냉매의 풀비등 열전달계수 (Pool boiling heat transfer coefficients of alternative refrigerants on low fin tubes)

  • 송길홍;이준강;정동수;김종보
    • 설비공학논문집
    • /
    • 제10권4호
    • /
    • pp.411-422
    • /
    • 1998
  • In this study, experiments were carried out to provide nucleate pool boiling heat transfer data for a plain tube and 4 different low fin tubes employing 2 refrigerant mixtures of R410A, R407C, and 12 pure fluids. Low fin tubes were machined on a 19.05mm nominal outside diameter copper block according to the manufacturer's low fin tube specifications. Cartridge heaters were used to generate uniform heat flux on the tubes. For all refrigerants, heat flux varied from 10㎾/$\m^2$ to 80㎾/$\m^2$. It is found that heat transfer coefficients(HTCs) of high vapor pressure refrigerants are usually higher than those of low pressure fluids. On the other hand, the fin effect was more prominent with low pressure refrigerants than with high pressure ones. Optimum fin density as well as the increase in heat transfer coefficient with the increase in fin density were found to be strongly fluid dependent. HTCs of Rl23, a low pressure alternative refrigerant, were similar to those of Rll while HTCs of R134a, an intermediate pressure alternative refrigerant, were roughly 20% higher than those of Rl2. Finally, HTCs of R32, R125, R143a, and R410A were all higher than those of R22 by 30~50%.

  • PDF

순수냉매의 흐름응축 열전달계수 (Flow Condensation Heat Transfer Coefficients of Pure Refrigerants)

  • 김신종;송길홍;정동수
    • 설비공학논문집
    • /
    • 제14권2호
    • /
    • pp.175-183
    • /
    • 2002
  • Flow Condensation heat transfer coefficients (HTCs) of Rl2, R22, R32, Rl23, Rl25, R134a, R142b were measured experimentally on a horizontal plain tube. The experi- mental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water-glycol loop. The test section in a refrigerant loop was made of a copper tube of 8.8 mm inner diameter and 1000 mm length respectively. The refrigerant was cooled by passing cold water through an annulus surrounding the test section. All tests were performed at a filed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, 300 kg/$m^2$s. The experimental result showed that flow condensation HTCs increase as the quality, mass flux, and latent heat of condensation increase. At the same mass flux, the HTCs of R32 and R142b were higher than those of R22 by 35~45% and 7~14% respectively while HTCs of R134a and Rl23 were similar to those of R22. On the other hand, HTCs of Rl25 and Rl2 were lower than those of R22 by 28 ~30% and 15 ~25% respectively Finally, a new correlation for flow condensation HTCs was developed by modifying Dobson and Chato's correlation with the latent heat of condensation considered. The correlaton showed an average deviation of 13.1% for all pure fluids data indicating an excellent agreement.

EES를 이용한 대체냉매 작동 2단압축냉동사이클의 성능해석 (Two-Stage compression cycle operating with alternative refrigerant using by EES program)

  • 박천완;이동규;최승길;강채동
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.533-538
    • /
    • 2009
  • The present study has been conducted to an analysis of two stage refrigeration cycle with alternative refrigerant R410A. In the analysis, single stage cycle (R22 and R410A) compared to COP changing with supercooling degree. Secondly, two stage refrigeration cycle is investigated to the existence of intercooler or supercooler. At results, supercooler contributes to the increase of cooling capacity and the decrease of COP.

  • PDF

내경 6 mm 평관과 마이크로 핀관 내에서 R22 대체냉매의 흐름응축 열전달계수 (Flow Condensation Heat Transfer Coefficients of R22 Alternative Refrigerants in Plain and Microfin Tubes of 6.0 mm Inside Diameter)

  • 박기호;서영호;박기정;정동수
    • 설비공학논문집
    • /
    • 제16권5호
    • /
    • pp.444-451
    • /
    • 2004
  • Flow condensation heat transfer coefficients (HTCs) of R22, R134a, R407C, and R410A were measured on horizontal plain and microfin tubes. The experimental apparatus was composed of three main parts; a refrigerant loop, a water loop and a water/glycol loop. The test section in the refrigerant loop was made of both a plain and a microfin copper tube of 6.0∼6.16 mm inside diameter and 1.0 m length. Refrigerants were cooled by passing cold water through an annulus surrounding the test section. Tests were performed at a fixed refrigerant saturation temperature of 4$0^{\circ}C$ with mass fluxes of 100, 200, and 300 kg/m2s. Test results showed that at similar mass flux the flow condensation HTCs of R134a were similar to those of R22 for both plain and microfin tubes. On the other hand, HTCs of R407C were lower than those of R22 by 4∼16% and 16∼42% for plain and microfin tubes respectively. And HTCs of R410A were similar to those of R22 for a plain tube but lower than those of R22 by 3∼9% for a microfin tube. Heat transfer enhancement factors of a microfin tube were 1.3∼1.9.