• Title/Summary/Keyword: R-22

Search Result 5,774, Processing Time 0.035 seconds

Thermodynamic Properties of Alternatives for R12, R22 and Performances of Refrigerator (R12 및 R22대체냉매의 열역학적 물성치 및 냉동기의 성능비교)

  • Chang, S.D.;Shin, J.Y.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.1
    • /
    • pp.73-83
    • /
    • 1993
  • Thermodynamic properties of alternatives for R12 and R22 were estimated and performances of refrigerating cycle using these refrigerants were compared. In this study, we adopt R134a, R22/R142b, R22/R152a, R22/R152a/R124 as alternatives for R12 and R32/R134a for R22. Thermodynamic properties of these refrigerants were estimated using modified CSD equation of state. Cycle simulations of the refrigerating system considering heat source were carried out in order to compare the performance of the system. R134a shows relatively lower COP than R12 but very similar VCR. R22/R142b(50/50 mass fraction), R22/R152a(10/90), R22/R152a/R124(30/25/45) are good for the substitutes of R12 and R32/R134a(30/70) is appropriate for that of R22 in view of COP and VCR.

  • PDF

Performance evaluation of R22 alternative refrigerants (R22 대체냉매의 성능 평가)

  • 송용재;박봉진;정동수;김종보
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.3
    • /
    • pp.292-302
    • /
    • 1998
  • In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R143a, R152a, and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in most of the residential air conditioners and heat pumps. The heat pump was of 1 ton capacity and water was employed as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Ternary mixtures composed of R32, R125, and R134a were shown to have 4∼5% higher COP and capacity than R22 and hence they seem to be very promising candidates to replace R22. On the other hand, ternary mixtures containing R125, R134a, and R152a have lower COP and capacity than R22. R32/R134a binary mixtures show a 7% increase in COP and have the similar capacity to that of R22 and hence they are also good candidates to replace R22. Special care must be exercised when a suction line heat exchanger is used with these mixtures in air conditioners. Finally, the compressor discharge temperatures of all mixtures tested were lower than those of R22 by 15.g∼34.7t, which indicates that these mixtures would offer better system reliability and longer life time than R22.

  • PDF

Thermodynamic Properties of R-32(Difluoromethane) and Initial Evaluation of Thermodynamic Perfomance as A R-22 Alternative Refrigerant (대체냉매 R-32(Difluoromethane)의 열역학적 물성과 R-22 대체냉매로서 열역학적 성능의 초기 평가)

  • Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.141-155
    • /
    • 1993
  • Thermodynamic properties of R-32 are calculated and its refrigeration performance is evaluated for the purpose the feasibility study of replacing R-22 with R-32. (1) Refrigeration effect of R-32 is superior to that of R-22 because heat of evaporation of R 32 is about 50% higher than that of R-22. However, COP of R-32 system is 10-30% lower than that of R-22 system. It is mainly attributed to the vapor pressore of R-32 being about 62% higher than R-22. (2) Since the pressure ratio and the specific heat ratio of R-32 system is higher than those of R -22, compressor discharging temperature rises as high as to $130-150^{\circ}C$. It may cause mechanical failure of compressor due to the breakdown of lubricant. Compressor should be improved to lower the temperature if R-32 is to replace R-22. (3) Averaged two-phase heat transfer coefficient of R-32 is about 10-20% higher than that of R-22. It may assume better heat exchanger effectiveness but not guarantee the better COP of R-32 system than R-22. (4) The high vapor pressure is the first reason to drop R-32 out of the line of R-22 alternative refrigerant. So, refrigerant mixtures based on R-32 are recommended to adjust the vapor pressure first and keep superior volumetric capacity of R-32.

  • PDF

Cycle Simulation of the Air-Conditioner Using Alternatives to R22 (R22의 대체냉매를 사용한 공기조화기의 성능 시뮬레이션)

  • Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.47-53
    • /
    • 1994
  • Cycle simulation of the air-conditioner was carried out using a number of candidate alternatives to R22;R32/R125/R134a(30/10/60, by mass percent), R32/R125/R134a(10/70/20), R32/R134a(25/75), R32/R134a(30/70), R32/R125(60/40), R290(propane) and R134a. In this study, we considered only the basic parts of the air-conditioner such as the compressor, the evaporator, the condenser and the capillary tube, for the purpose of analysis. The performance characteristics of alternatives considered here were examined by comparing with the case using R22 at the constant volumetric flow rate condition. The results of our analysis revealed that the use of refrigerant mixtures, R32/R134a(30/70) and R32/R125/R134a(30/10/60), was appropriate for the alternatives to R22 in view of the cooling capacity and the COP. For the case of using R134a and R290, the COP was observed to increase under the same volumetric flow rate condition, but the cooling capacity was substantially decreased. Therefore the use of R134a and R290 should be accompanied with increasing considerably the size of compressor in order to maintain the same cooling capacity of R22.

  • PDF

Performance of the Cooling and Heating of Heat Pump Using Non-azeotropic Refrigerant Mixtures (비공비혼합냉매를 이용한 열펌프의 냉난방성능에 관한 연구)

  • 박기원;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.4
    • /
    • pp.53-61
    • /
    • 1994
  • An experimental study on heat pump cycle systematizing characteristics for non-azeotropic refrigerant mixtures of R-22+R-114 was reported. Data were obtained under steady state condition at the ranges of parameters, 550- 2, 170kcal/h, 670-2, 990kcal/h, 24-71kg/h, and 0-1, for as cooling capacity, heating capacity, mass 25, 50, 75, and 100 per cent of R-22 by weight fraction for R-22+R-114 mixtures. The results shown that the C.O.P of the 50wt% of R-22 mixture was considerably larger than for pure R-22 and other weight fraction of R-22 mixtures, but the compression power of the 25wt% of R-22 was lower than that of the pure R-22 and the other weight fraction of R-22 mixtures. The hightest value of cooling capacity was obtained at the conditions of evaporating temperature 5.deg.C and R-22 50wt% mixture. In general, with an increase in the R-22 weight fraction for fixed values of the other parameter, the cooling capacity increased at first, obtained a maximum, and then decreasd. This verified the importance of accurate weight fractions od refrigerant mixtures in the heat pump cycle.

  • PDF

Drop-In Evaluation of Thermodynamic Performance of R-22 Alternative Refrigerant Mixtures (R-22 대체용 혼합냉매의 Drop-In 열역학적 성능 계산)

  • Ju, J.M.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.3
    • /
    • pp.423-436
    • /
    • 1996
  • Thermodynamic performance of eight zeotropic R-22 alternative refrigerant mixtures selected by AREP(R-22 Alternative Refrigerants Evaluation Program) and R-32/R-125/R-134a(23%/25%/52%), namely R-407C were evaluated by the "drop-in" simulation method. An existing air conditioner was selected and its design data were used for the simulation. "ARI Test A" air conditions were applied. The degree of vapor superheat at the compressor inlet fixed at $5^{\circ}C$ for all the mixtures. The results of the simulation were compared with those of R-22. COPs of all mixtures except for R-32/R-227ea(35%/65%) and R-32/R-125/R-134a(10%/70%/20%), were higher than that of R-22 by 2%~8%, while the capacities were all lower than that of R-22 by 13%~27%. COP of R-32/R-134a(40%/60%) was 2.4% higher but the capacity was 15% lower than those of R-22. In the case of R-32/R-134a(30%/70%), COP and capacity were 5.5% higher and 15% lower than those of R-22, respectively. Among the ternary mixtures, R-407C and R-32/R-125/R-134a(30%/10%/60%) showed the best performance. COP of R-407C was 2.4% higher than those of R-22 but the capacity was 15% lower.

  • PDF

Comparison of Condenser Characteristics using R134a and R22 under the Same Inlet Temperature Condition (동일한 유입온도조건에서 R134a와 R22 적용 응축기의 특성비교)

  • Kang, Shin-Hyung;Byun, Ju-Suk;Kim, Chang-Duk
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.166-173
    • /
    • 2006
  • R134a is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the heat transfer and pressure drop for R134a flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of $60^{\circ}C$ and refrigerant mass fluxes of $150,\;200,\;and\;250\;kg/m^{2}s$. The inlet air has dry bulb temperature or $35^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.6 m/s. Experiments show that air velocity decreased by 5.9% is needed for R134a than that of R22 while pressure drop for R134a was $18.1{\sim}20.4%$ higher than that of R22 for the degree of subcooling $5^{\circ}C$. The results are useful in designing more compact and effective condensers for various refrigeration and air conditioning systems using refrigerant R134a.

Condensation Heat Transfer of R22, R407C, and R410A in Slit Fin-and-Tube Heat Exchanger

  • Jeon, Chang-Duk;Lee, Jin-Ho
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.4
    • /
    • pp.188-198
    • /
    • 2003
  • R410A and R407C are considered to be alternative refrigerants of R22 for the air-conditioners. An experimental study is carried out to investigate the effect of the change of mass flow rate on the characteristics of heat transfer and pressure drop in three row slit finned-tube heat exchanger for R407C, R410A and R22. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation heat transfer coefficient was much lower than that of R22 and R410A. On the other hand, the condensation heat transfer coefficient of R410A, near-azeotropic refrigerant mixture, was a little higher than that of R22. R410A also showed the lowest condensation pressure drop across the test section. For all refrigerants, the condensation heat transfer coefficient and pressure drop increase as the mass flux increases. The condensation heat transfer coefficient correlation proposed by Kedzierski shows the best agreement with the experimental data within $\pm$20%.

An experimental investigation of thermodynamic performance of R-22 alternative blends (R-22 대체용 혼합냉매의 열역학적 성능에 대한 실험연구)

  • Hwang, E.P.;Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.82-91
    • /
    • 1997
  • R-410a and R-407c witch have the best potential among the substances being considered as R-22 alternatives were tested as "drop in" refrigerants against a set R-22 baseline tests for comparison. The performance evaluations were carried out in a psychrometric calorimeter test facility using the residential split-type air conditioner under the ARI rating conditions. Other than the use of different lubricant and a hand-operated expansion valve, one of the commercial systems was selected for the experiment. Performance characteristics were measured; compressor power, capacity, VCR, mass flow rate and COP. The tests showed that R-407c can be directly applied to the existing refrigeration system because of its similar vapor pressure and other thermopysical properties with those of R-22. However, it required change to the volume flow rate of compressor in order to achieve the similar performance with R-22 because of its relatively small VCR and capacity. Meanwhile, R-410a has too high a vapor pressure to be applied to the existing system and this feature results in relatively low COP of the system compared to that of R-22. But this could be improved by changing compressor design considering R-410a's relatively high VCR and capacity compared to those of R-22.

  • PDF

Development of Refrigeration Equipment for Tuna Long Liner (참치 어선 냉동장치의 개발에 관한 연구)

  • 오후규;정재천;김성규;구학근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.16 no.4
    • /
    • pp.78-87
    • /
    • 1992
  • The experimental study and theoretical analysis are made in order to investigate a new refrigeration system, R-22 and R-502 or R-13 cascade compressor with panel type cooler, for tuna long liner. The experimental apparatus consists with the cascade unit, 1.5 HP R-502 compressor in the first stage and 1 HP R-22 compressor in the second stage, and 3 $m^2$ cold storage room with a direct expansion panel type cooler. The main result are as follows: 1. The energy saving and C.O.P. of the R-22 and R-502 or R-22 and R-13 cascade are improved much higher than two stage compressor. 2. For the point of simplicity of design, installation, and running cost, the panel type cooler is much better than traditional hair pin coil type cooler. 3. From the experimental data and analysis, the R-22 and R-502, or R-22 and R-13 cascade compressor with panel type cooler is recommended for a new refrigeration equipment of the tuna long liner.

  • PDF