• Title/Summary/Keyword: R wave amplitude

Search Result 75, Processing Time 0.024 seconds

Studies on electrocardiogram of the normal Korean native cattle I. Standard limb leads (정상적(正常的)인 한우(韓牛)의 심전도(心電圖)에 관(關)한 연구(硏究) I. 표준지유도(標準肢誘導))

  • Choi, In-hyuk;Jung, In-sung;Kim, Nam-soo;Suh, Doo-seok
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.4
    • /
    • pp.719-734
    • /
    • 1993
  • The electrocardiographic(ECG) parameters on the standard limb leads in the normal Korean native cattle have been measured with a 3 channel Electrocardiograph built in a computed analysis. The study was conducted on the animals 98 heads of mean age of 17.7 months. Conduction parameters, waves, intervals and segments have been recorded. The recordings were analyzed as to shape and amplitude of the P and T waves and the components of the QRS complex. Heart rate was recorded by the Electrocardiogram which were a mean of $80.4{\pm}11.6beats/min$. And the younger had a higher heart rate than the older one. Average conduction times in the RP, the QRS complex and the QTc interval recorded $166.7{\pm}23.1msec.$, $79.7{\pm}8.8msec.$ and $395.5{\pm}30.4msec.$, in the P and T wave duration recorded $70.1{\pm}13.5msec.$ and $97.6{\pm}16.9msec.$, and in the PR and ST segment duration recorded $97.9{\pm}23.5msec.$ and $173.9{\pm}40.3msec.$, respectively. The wave forms in each lead observed various types. The amplitudes of wave type showed the highest frequency in each lead that were analyzed as follow : 1. In P wave, amplitudes of the positive type showed the frequency of 65.3%, 82.7% and 52.0% in leads I, II and III that were $103.1{\pm}47.8{\mu}V$, $115.2{\pm}37.3{\mu}V$ and $67.4{\pm}26.9{\mu}V$, and it showed the frequency of 54.1% and 85.7% in the leads aVL and aVF that were $63.7{\pm}23.0{\mu}V$, $88.0{\pm}83.6{\mu}V$, respectively. Average amplitude of the negative type showed the frequency of 78.6% in lead aVR which was $99.3{\pm}38.0{\mu}V$. 2. Average amplitude of the QRS complex were from $362.8{\pm}177.7{\mu}V$ to $532.8{\pm}253.9{\mu}V$(mean of $449.1{\pm}57.2{\mu}V$) that in all leads except lead I were manifested the Low-Voltage QRS complex(below 0.5mV). Average amplitudes of each wave type in the QRS complex aere $-50.2.4{\pm}258.2{\mu}V$ and $-428.6{\pm}195.1{\mu}V$ in the QS groups type that showed a frequency of 66.3%, 70.4% in the leads I and aVL, were $451.1{\pm}20.4.0{\mu}V$, $387.6{\pm}175.8{\mu}V$ and $299.3{\pm}146.5{\mu}V$ in the R groups type that showed a frequency of 48.0%, 53.1% and 34.7% in the leads III, aVR and aVF, and were $-307.5{\pm}180.3{\mu}V$, $201.4{\pm}77.2{\mu}V$ in the QR wave type which showed a frequency of 39.8% in lead II, respectively. 3. In T wave, amplitude of the positive type showed the frequency of 50.0%, 82.7%, 51.0% and 57.1% in leads II, III aVR and aVF which were $214.9{\pm}115.6{\mu}V$, $188.5{\pm}119.3{\mu}V$, $191.0{\pm}93.7{\mu}V$ and $165.7{\pm}91.9{\mu}V$, and the negative type showed a frequecny of 66.3% and 72.5% in leads I and aVL. that were $221.3{\pm}112.5{\mu}V$, $-173.6{\pm}86.7{\mu}V$, respectively. 4. Amplitude of ST segment in leads I, II and III were a mean of $-12.2{\pm}37.2{\mu}V$, $17.5{\pm}42.6{\mu}V$ and $28.3{\pm}40.4{\mu}V$, in leads aVR, aVL and aVF were $-3.9{\pm}32.5{\mu}V$, $-15.9{\pm}35.6{\mu}V$ and $26.2{\pm}37.5{\mu}V$, respectively.

  • PDF

Development of an Algorithm for P-wave Arrival Time determination Using Amoving Window Function (가변창문함수를 이용한 미소파괴음의 P파 도달시간 결정 알고리즘 개발)

  • Lee, Kyung-Soo;Cho, Seong-Ha;Lee, Chang-Soo;Choi, Young-Chul;Yoo, Bo-Sun
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.103-113
    • /
    • 2015
  • This study presents a novel algorithm for determining the P-wave arrival time using amoving window function to improve source localization in low-SNR (signal-to-noise ratio)acoustic emissions. The proposed algorithm was applied to low-SNR signals to verify the accuracy of measurements against existing algorithms. When other algorithms were applied, the test results revealed that SNR decreased and accuracy was reduced, especially where SNR wasless than 2.14. The proposed algorithm using amoving window function considers the frequency characteristic and signal amplitude simultaneously, and produced reliable results where SNR was 2.14.

Hydroelastic analysis of a truss pontoon Mobile Offshore Base

  • Somansundar, S.;Selvam, R. Panneer;Karmakar, D.
    • Ocean Systems Engineering
    • /
    • v.9 no.4
    • /
    • pp.423-448
    • /
    • 2019
  • Very Large Floating Structures (VLFS) are one among the solution to pursue an environmentally friendly and sustainable technology in birthing land from the sea. VLFS are extra-large in size and mostly extra-long in span. VLFS may be classified into two broad categories, namely the pontoon type and semi-submersible type. The pontoon-type VLFS is a flat box structure floating on the sea surface and suitable in regions with lower sea state. The semi-submersible VLFS has a deck raised above the sea level and supported by columns which are connected to submerged pontoons and are subjected to less wave forces. These structures are very flexible compared to other kinds of offshore structures, and its elastic deformations are more important than their rigid body motions. This paper presents hydroelastic analysis carried out on an innovative VLFS called truss pontoon Mobile Offshore Base (MOB) platform concept proposed by Srinivasan and Sundaravadivelu (2013). The truss pontoon MOB is modelled and hydroelastic analysis is carried out using HYDRAN-XR* for regular 0° waves heading angle. Results are presented for variation of added mass and damping coefficients, diffraction and wave excitation forces, RAOs for translational, rotation and deformational modes and vertical displacement at salient sections with respect to wave periods.

Numerical and experimental study on dynamic response of moored spar-type scale platform for floating offshore wind turbine

  • Choi, E.Y.;Cho, J.R.;Cho, Y.U.;Jeong, W.B.;Lee, S.B.;Hong, S.P.;Chun, H.H.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.909-922
    • /
    • 2015
  • The dynamic response and the mooring line tension of a 1/75 scale model of spar-type platform for 2.5 MW floating offshore wind turbine subject to one-dimensional regular harmonic wave are investigated numerically and verified by experiment. The upper part of wind turbine which is composed of three rotor blades, hub and nacelle is modeled as a lumped mass the scale model and three mooring lines are pre-tensioned by means of linear springs. The coupled fluid-rigid body interaction is numerically simulated by a coupled FEM-cable dynamics code, while the experiment is performed in a wave tank with the specially-designed vision and data acquisition system. The time responses of surge, heave and pitch motions of the scale platform and the mooring line tensions are obtained numerically and the frequency domain-converted RAOs are compared with the experiment.

A study on response analysis of submerged floating tunnel with linear and nonlinear cables

  • Yarramsetty, Poorna Chandra Rao;Domala, Vamshikrishna;Poluraju, P.;Sharma, R.
    • Ocean Systems Engineering
    • /
    • v.9 no.3
    • /
    • pp.219-240
    • /
    • 2019
  • This paper presents the comparison between SFT response with linear and nonlinear cables. The dynamic response analysis of submerged floating tunnel (SFT) is presented computationally with linear and nonlinear tension legs cables. The analysis is performed computationally for two wave directions one at 90 degrees (perpendicular) to tunnel and other at 45 degrees to the tunnel. The tension legs or cables are assumed as linear and non- linear and the analysis is also performed by assuming one tension leg or cable is failed. The Response Amplitude Operators (RAO's) are computed for first order waves, second order waves for both failure and non-failure case of cables. For first order waves- the SFT response is higher for sway and heave degree of freedom with nonlinear cables as compared with linear cables. For second order waves the SFT response in sway degree of freedom is bit higher response with linear cables as compared with nonlinear cables and the SFT in heave degree of freedom has higher response at low time periods with nonlinear cables as compared with linear cables. For irregular waves the power spectral densities (PSD's) has been computed for sway and heave degrees of freedom, at $45^0$ wave direction PSD's are higher with linear cables as compared with nonlinear cables and at $90^0$ wave direction the PSD's are higher with non-linear cables. The mooring force responses are also computed in y and z directions for linear and nonlinear cables.

The Meaning of P50 Suppression : Interaction of Gamma and Alpha Waves

  • Lee, Kyungjun;Kang, Ung Gu
    • Korean Journal of Biological Psychiatry
    • /
    • v.21 no.4
    • /
    • pp.168-174
    • /
    • 2014
  • Objectives Sensory gating dysfunctions in patients with schizophrenia and bipolar disorder have been investigated through two similar methods ; P50 suppression and prepulse inhibition paradigms. However, recent studies have demonstrated that the two measures are not correlated but rather constitute as distinct neural processes. Recent studies adopting spectral frequency analysis suggest that P50 suppression reflects the interaction between gamma and other frequency bands. The aim of the present study is to investigate which frequency component shows more significant interaction with gamma band. Methods A total of 108 mood disorder patients and 36 normal subjects were included in the study. The P50 responses to conditioning and test stimuli with an intra-pair interval of 500 msec were measured in the study population. According to P50 ratio (amplitude to the test stimulus/amplitude to the conditioning stimulus), the subjects with P50 ratio less than 0.2 were defined as suppressed group (SG) ; non-suppressed group (NSG) consisted of P50 ratio more than 0.8. Thirty-five and 25 subjects were included in SG and NSG, respectively. Point-to-point correlation coefficients (PPCCs) of both groups were calculated between two time-windows : the first window (S1) was defined as the time-window of one hundred millisecond after the conditioning auditory stimulus and the second window (S2) was defined as the time-window of 100 msec after the test auditory stimulus. Spectral frequency analysis was performed to investigate which frequency band results in the difference of PPCC between SG and NSG. Results Significant reduction of PPCC between S1 and S2 was observed in the SG (Pearson's r = 0.24), compared to PPCC of the NSG (r = 0.58, p < 0.05). In spectral frequency analysis, gamma band showed "phase-reset" and similar responses after the two auditory stimuli in suppressed and non-suppressed group. However in the case of alpha band, comparison showed significantly low PPCC in SG (r = -0.14) compared to NSG (r = 0.36, p < 0.05). This may be reflecting "phase-out" of alpha band against gamma band at approximately 50 msecs after the test stimulus in the SG. Conclusions Our study suggests that normal P50 suppression is caused by phase-out of alpha band against gamma band after the second auditory stimulus. Thus it is demonstrated that normal sensory gating process is constituted with attenuated alpha power, superimposed on consistent gamma response. Implications of preserved gamma and decreased alpha band in sensory gating function are discussed.

A Study on the Defect length Measurement of Titanium Weld Zone Considering Acoustical Anisotropy (음향 이방성을 고려한 티타늄 용접부의 결함길이 측정에 관한 연구)

  • Park, Hee-Dong;Yun, In-Sik;Yi, Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.9
    • /
    • pp.1070-1077
    • /
    • 2011
  • This study intends to assess the defect in the weld zone of titanium grade 2 plate in terms of acoustical anisotropy based on the angle beam method. Depending on the rolling direction, the ratio of wave velocity was found to be 1.08 and the difference in the angle of refraction was more than seven degrees, confirming the presence of acoustical anisotropy. Thus for measuring the length of defect in the weld zone of the titanium plate (thickness of 10mm), the distance amplitude characteristics curves of titanium, TDACC-R and TDACC-T were constructed for the measurements in consideration of the acoustical anisotropy on CRT of the ultrasonic testing equipment. As a result, when the distance amplitude characteristics curve corresponds to the rolling direction, the length of defect was close to the actual measurement within 1mm and when different, the difference was found to be over 4mm. It was affirmed that the acoustical anisotropy should be taken into consideration when measuring the length of defects in the weld zone of the titanium plate with the presence of acoustical anisotropy.

Flow Near a Rotating Disk with Surface Roughness (표면조도를 갖는 회전판 주위의 유동)

  • Park, Jun-Sang;Yoon, Myung-Sup;Hyun, Jae-Min
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.634-639
    • /
    • 2003
  • It has been studied the flow near a rotating disk with surface topography. The system Ekman number is assumed very small, i.e., $E[{\equiv}\frac{\nu}{{\Omega}^{\ast}L^{\ast2}}]<<1$ in which $L^{\ast}$ denotes a disk radius, ${\nu}$ kinematic viscosity of the fluid and ${\Omega}^{\ast}$ angular velocity of the basic state. Disk surface has a sinusoidal topographic variation along radial coordinate, i.e., $z={\delta}cos(2{\pi}{\omega}r)$, where ${\delta}$ and ${\omega}$ are, respectively, nondimensional amplitude and wave number of the disk surface. Analytic solutions, being useful over the parametric ranges of ${\delta}{\sim}O$( $E^{1/2}$ ) and ${\omega}{\leq}O$ ( $E^{1/2}$ ), are secured in a series-function form of Fourier-Bessel type. An asymptotic behavior, when $E{\rightarrow}0$, is clarified as : for a disk with surface roughness, in contrast to the case of a flat disk, the azimuthal velocity increases in magnitude, together with the thickening boundary layer. The radial velocity, however, decreases in magnitude as the amplitude of surface waviness increases. Consequently, the overall Ekman pumping at the edge of the boundary layer remains unchanged, maintaining the constant value equal to that of the flat disk.

  • PDF

Effects of Sodium Bicarbonate on Electrocardiogram in Hyperkalemia (과칼륨혈증의 심전도변화와 중조(重曹)투여가 이에 미치는 영향)

  • Cho, Young-Ho;Chae, E-Up
    • The Korean Journal of Physiology
    • /
    • v.16 no.1
    • /
    • pp.41-50
    • /
    • 1982
  • The effects of $NaHCO_3$ on the electrocardiogram of rats were studied in the induced hyperkalemia. The subjects were divided into 4 groups: the group 1 was normal control and the data on this normal control had teen obtained from the following three groups before administration of KCl or $NaHCO_3$, the group 2 (KCl) was administered 40 ml per kg body weight of the 10 per cent KCl solution, the group 3 $(NaHCO_3)$ was administered 40 ml per kg body weight of the 10 per cent $NaHCO_3$ solution, and the group 4 $(KCl+NaHCO_3)$ was received 10 per cent KCl, which was followed by administration of 10 per cent $NaHCO_3$ at one and half hours later. In KCl, the heart rate was decreased rapidly, and then maintained its level, later rapid decreasing heart rate was followed by the cardiac stand still. The mean electrical axis of QRS complex became progressively deviated to the left. The amplitude of T wave was increased transiently but was not changed thereafter. There was prolongation of the P-Q interval and the Q-T interval at the beginning and then they were shortened. In $NaHCO_3$, the heart rate was decreased rapidly at the beginning, later showed a tendency of recovery. The mean electrical axis of QRS was not changed initially, but later became deviated to the left. The amplitude of T wave was not changed. There was prolongation of the P-Q interval and the Q-T interval at the beginning and then they were shortened. In $KCl+NaHCO_3$, there were a tendency of recovery of both the amplitude of the T wave and the electrical axis of the QRS complex after administration of $NaHCO_3$ but the heart rate was not recovered. There was prolonged P-Q interval, but the Q-T interval was relatively unchanged.

  • PDF

Advances in Ultrasonic Testing of Austenitic Stainless Steel Welds

  • Moysan, J.;Ploix, M.A.;Corneloup, G.;Guy, P.;Guerjouma, R. El;Chassignole, B.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.3
    • /
    • pp.245-253
    • /
    • 2008
  • A precise description of the material is a key point to obtain reliable results when using wave propagation codes. In the case of multipass welds, the material is very difficult to describe due to its anisotropic and heterogeneous properties. Two main advances are presented in the following. The first advance is a model which describes the anisotropy resulting from the metal solidification and thus the model reproduces an anisotropy that is correlated with the grain orientation. The model is called MINA for modelling anisotropy from Notebook of Arc welding. With this kind of material model1ing a good description of the behaviour of the wave propagation is obtained, such as beam deviation or even beam division. But another advance is also necessary to have a good amplitude prediction: a good quantification of the attenuation, particularly due to grain scattering, is also required as far as attenuation exhibits a strong anisotropic behaviour too. Measurement of attenuation is difficult to achieve in anisotropic materials. An experimental approach has been based both on the decomposition of experimental beams into plane waves angular spectra and on the propagation modelling through the anisotropic material via transmission coefficients computed in generally triclinic case. Various examples of results are showed and also some prospects to continue refining numerical simulation of wave propagation.