• Title/Summary/Keyword: R&D Phase

Search Result 1,408, Processing Time 0.036 seconds

Microcrystalline Silicon for Thin Film Transistor

  • Milovzorov, D.;Kim, K.B.;Lisachenko, M.;Seo, J.W.;Lee, K.Y.;Chung, H.K.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1320-1322
    • /
    • 2005
  • Microcrystalline silicon films were deposited on glass substrate by using plasma-enhanced chemical vapor deposition (PECVD) method. The crystalline volume fraction was estimated by means of Raman spectrometer with argon laser as light source. The high hydrogen dilution of silane gas was used for increase in content of crystal silicon phase.

  • PDF

New Photochemistry of UV-Absorbing Chemicals in Phase-Controlled Polymer Microspheres (상구조가 조절된 고분자 미립구에서 자외선 흡수제의 거동에 대한 연구)

  • Lee Jong-Suk;Kim Jin-Woong;Kim Junoh;Han Sang-Hoon;Chang Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.361-367
    • /
    • 2004
  • In this study, a different UV (ultra-violet) ray absorption system is presented in which butyl methoxydiben-zoylmethane (BMDM, a model UV-A absorbent, 320$\~$400 nm) is stabilized in phase-controlled poly(methyl methacrylate) (PMMA) microspheres. The photochemistry of BMDM in the microspheres was investigated considering its phase characteristics therein. The analysis of a differential scanning calorimeter and X-ray diffractometer showed that the BMDM in the microspheres was present with a non-crystalline state. The phase control of BMDM in the polymer microsphere has an excellent ability to protect UV-A with maintaining its photo- and thermal stability. The results obtained in this study illustrate well that the phase control of the UV absorbents in the polymer microspheres is another key factor that de-termines its photochemistry and photostability in the final formulations.

A study on the Improvement Direction of Design Phase Entry Criteria Review for Naval Surface Ships & Onboard Weapon Systems R&D Project (함정 및 함정탑재 무기체계 연구개발사업의 설계단계 진입조건 검토 개선 방향)

  • Kwang Yong Hwang;Dong Myung Seol;Bong Wan Choi
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.19 no.1
    • /
    • pp.79-90
    • /
    • 2023
  • In principle, R&D of general weapons systems are led by companies or government-funded organizations. In terms of project execution, the defense R&D planning system was reorganized to conduct SE-based project management by integrating the naval ship project execution procedure into the general weapon system R&D procedure. The development progress was confirmed according to the guide for SE application of DAPA, and a technical review meeting was proposed to enter into the each next phase in the R&D process. This paper focuses on improvement for technical review in terms of technical management based on system engineering for R&D mounted weapon systems and the naval surface ship project in preliminary design and detailed design. So, the improvement direction for reviewing the entry criteria for the R&D weapons systems of the naval ship and mounted weapons is proposed.

Development of Multi-layer Pressure Sensor using PEDOT Vapor Phase Polymerization (PEDOT 기상중합 원단을 이용한 멀티 레이어 압력 센서 개발)

  • Lim, Seung Ju;Bae, Jong Hyuk;Jang, Seong Jin;Lim, Jee Young;Park, Keun Hae;Ko, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.186-191
    • /
    • 2018
  • Smart textile industries have been precipitously developed and extended to electronic textiles and wearable devices in recent years. In particular, owing to an increasingly aging society, the elderly healthcare field has been highlighted in the smart device industries, and pressure sensors can be utilized in various elderly healthcare products such as flooring, mattress, and vital-sign measuring devices. Furthermore, elderly healthcare products need to be more lightweight and flexible. To fulfill those needs, textile-based pressure sensors is considered to be an attractive solution. In this research, to apply a textile to the second layer using a pressure sensing device, a novel type of conductive textile was fabricated using vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Vapor phase polymerization is suitable for preparing the conductive textile because the reaction can be controlled simply under various conditions and does not need high-temperature processing. The morphology of the obtained PEDOT-conductive textile was observed through the Field Emission Scanning Electron Microscope (FESEM). Moreover, the resistance was measured using an ohmmeter and was confirmed to be adjustable to various resistance ranges depending on the concentration of the oxidant solution and polymerization conditions. A 3-layer 81-point multi-pressure sensor was fabricated using the PEDOT-conductive textile prepared herein. A 3D-viewer program was developed to evaluate the sensitivity and multi-pressure recognition of the textile-based multi-pressure sensor. Finally, we confirmed the possibility that PEDOT-conductive textiles could be utilized by pressure sensors.

Neutral Current Compensation Using Single Phase Active Power Filter in Three-Phase Four-Wire Electric Distribution Systems (3상 4선식 배전계통에서 단상 능동필터를 이용한 중성선 전류의 보상)

  • Choi, See-Young;Kim, Byung-Seob;Song, Jong-Hwhan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1046-1048
    • /
    • 2002
  • The increase of triplen harmonics in three-phase four-wire systems leads to overloaded neutral conductor, common-mode noise problems, derating of transformers, and so on. Various compensator has been designed to prevent the problems associated with the triplen harmonics. But these can not protect distribution system effectively because the triplen harmonic source is distributed extensively and distribution system type is diverse. This paper explain the operation and installation of single phase active power filter to eliminate triplen harmonics and then it is verified by simulation.

  • PDF

Micro-deformation behavior of Brittle Hf-based Metallic Glass during Mechanical Milling (기계적 합금화 공정에 의한 Hf계 비정질 분말의 미세변형거동 관찰)

  • Kim, Song-Yi;Lee, A-Young;Cha, Eun-Ji;Kwon, Do-Hun;Hong, Sung-Uk;Lee, Min-Woo;Kim, Hwi-Jun;Lee, Min-Ha
    • Journal of Powder Materials
    • /
    • v.25 no.3
    • /
    • pp.246-250
    • /
    • 2018
  • In this study, we investigate the deformation behavior of $Hf_{44.5}Cu_{27}Ni_{13.5}Nb_5Al_{10}$ metallic glass powder under repeated compressive strain during mechanical milling. High-density (11.0 g/cc) Hf-based metallic glass powders are prepared using a gas atomization process. The relationship between the mechanical alloying time and microstructural change under phase transformation is evaluated for crystallization of the amorphous phase. Planetary mechanical milling is performed for 0, 40, or 90 h at 100 rpm. The amorphous structure of the Hf-based metallic glass powders during mechanical milling is analyzed using differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Microstructural analysis of the Hf-based metallic glass powder deformed using mechanical milling reveals a layered structure with vein patterns at the fracture surface, which is observed in the fracture of bulk metallic glasses. We also study the crystallization behavior and the phase and microstructure transformations under isothermal heat treatment of the Hf-based metallic glass.

Thermal Behavior and Crystallographic Characteristics of an Epitaxial C49-$TiSi_2$ Phase Formed in the Si (001) Substrate by $N_2$Treatment (Si (001) 기판에서 $N_2$처리에 의해 형성된 에피택셜 C49-$TiSi_2$상의 열적 거동과 결정학적 특성에 관한 연구)

  • Yang, Jun-Mo;Lee, Wan-Gyu;Park, Tae-Soo;Lee, Tae-Kwon;Kim, Joong-Jung;Kim, Weon;Kim, Ho-Joung;Park, Ju-Chul;Lee, Soun-Young
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • The thermal behavior and the crystallographic characteristics of an epitaxial $C49-TiSi_2$ island formed in a Si (001) substrate by $N_2$, treatment were investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found from the analyzed results that the epitaxial $C49-TiSi_2$ was thermally stable even at high temperature of $1000^{\circ}C$ therefore did not transform into the C54-stable phase and did not deform morphologically. HRTEM results clearly showed that the epitaxial $TiSi_2$ phase and Si have the orientation relationship of (060)[001]$TiSi_2$//(002)[110]Si, and the lattice strain energy at the interface was mostly relaxed by the formation of misfit dislocations. Furthermore, the mechanism on the formation of the epitaxial $_C49-TiSi2$ in Si and stacking faults lying on the (020) plane of the C49 Phase were discussed through the analysis of the HRTEM image and the atomic modeling.

  • PDF

STATUS AND PERSPECTIVE OF TWO-PHASE FLOW MODELLING IN THE NEPTUNE MULTISCALE THERMAL-HYDRAULIC PLATFORM FOR NUCLEAR REACTOR SIMULATION

  • BESTION DOMINIQUE;GUELFI ANTOINE;DEN/EER/SSTH CEA-GRENOBLE,
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.511-524
    • /
    • 2005
  • Thermalhydraulic reactor simulation of tomorrow will require a new generation of codes combining at least three scales, the CFD scale in open medium, the component scale and the system scale. DNS will be used as a support for modelling more macroscopic models. NEPTUNE is such a new generation multi-scale platform developed jointly by CEA-DEN and EDF-R&D and also supported by IRSN and FRAMATOME-ANP. The major steps towards the next generation lie in new physical models and improved numerical methods. This paper presents the advances obtained so far in physical modelling for each scale. Macroscopic models of system and component scales include multi-field modelling, transport of interfacial area, and turbulence modelling. Two-phase CFD or CMFD was first applied to boiling bubbly flow for departure from nucleate boiling investigations and to stratified flow for pressurised thermal shock investigations. The main challenges of the project are presented, some selected results are shown for each scale, and the perspectives for future are also drawn. Direct Numerical Simulation tools with Interface Tracking Techniques are also developed for even smaller scale investigations leading to a better understanding of basic physical processes and allowing the development of closure relations for macroscopic and CFD models.

Electro-rheological Measurements of Phase Inversion of Emulsions under Shear Flow (전단응력 하에서 에멀젼 상 변이의 측정을 위한 전기 유변학적 연구)

  • Seung Jae, Baik;Young-Jin, Lee;Yoon Sung, Nam;Chin Han, Kim;Han Kon, Kim;Hak Hee, Kang
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.147-151
    • /
    • 2004
  • This study aims at measuring electrical and rheological properties of cosmetic emulsions on the skin under shear flow. The effects of volume ratio and surfactants on structural changes of emulsions were examined by determining the changes of electrical resistance, viscosity, and morphology. As the ratio of the internal phase increased, the phase inversion occurred more quickly. The viscosity change was found to increase with increasing of the variation of electrical resistance of the emulsions. This phenomenon may be caused by decreased resistant force against the shear flow because of the breakdown of the internal phase. Surfactants a]so played a key ro]e on phase transition of emulsions. It is likely that polymeric surfactants anchoring on the emulsion surface reinforced the interfacial mechanical strength. As the concentration of surfactants increased, the phase transition occurred more slowly. It has been demonstrated that the phase changes of emulsions under shear flow can be monitored on the real-time basis by using a JELLI$\^$TM/ chip system, a combination of conductiometry and rheometry. Our approach is expected to a useful experimental tool for predicting the phase transition of the cosmetic products during skin application.

Single cell gap polymer-stabilized blue-phase transflective LCDs using internal nanowire grid polarizer

  • Cui, Hong-Qing;Ye, Zhi-Cheng;Hu, Wei;Lin, Xiao Wen;Chung, T.C.;Jen, Tean-Sen;Lu, Yan-Qing
    • Journal of Information Display
    • /
    • v.12 no.3
    • /
    • pp.115-119
    • /
    • 2011
  • Optically isotropic liquid crystal (LC) mixture such as blue-phase LC and nanostructured LC composites exhibit the advantages of fast response time, high contrast ratio and wide-viewing angle due to the induced birefringence along the horizontal electric field. Utilizing this mixture, a novel single cell gap in-plane switching-type polymer-stabilized blue-phase transflective liquid crystal display by embedding the nanowire grid polarizer as a polarization-dependent reflective polarizer in the R region is proposed. This device can be used as a normal black mode without any quarter-wave plate or patterned in-cell phase retarder. Moreover, the transmittance is identical to the reflectance so that it will be suitable for single gamma driving. Detailed electro-optic performances, such as voltage-dependent light efficiency and viewing angle of the proposed device configuration, are investigated.