• Title/Summary/Keyword: R&D협력 사례

Search Result 63, Processing Time 0.024 seconds

Enhancing Productivity through Innovation: Korea's Response to Competitiveness Challenges (경쟁력 도전에 대한 한국의 대응 - 혁신을 통한 생산성 향상 -)

  • Suh, Joonghae
    • KDI Journal of Economic Policy
    • /
    • v.27 no.1
    • /
    • pp.211-238
    • /
    • 2005
  • Korea is far behind other OECD countries in economy-wise productivity: Korea's labor productivity in terms of GDP per hour worked is the lowest among OECD countries. Against the existing productivity gap, there is a worrying sign in Korea's investment trend - rapid fall in machinery and equipment investment with slow increase in R&D investment. The challenge facing Korea is how to transform her economy from catching-up model to a knowledge-based one. The paper shows that, in tandem with the structural changes that today's Korean industries are experiencing, industry's innovation system is also changing. Innovation networks are emerging as the result of economy-wise restructuring since the financial crisis of 1997 and, though still not a dominant force, the newly emerging innovation networks will be the main threads of industry's innovation activities in the future. The changes in industrial innovation system would positively contribute in raising the productivity of the Korean economy. The paper contains a case study on Korea's automobile industry in order to highlight some of main characteristics of the structural changes, in addition to a chapter that gives an overview of the evolutionary paths of the Korea's industrial innovation. The paper assesses that changes can be considered as a positive sign of future growth perspective; but there are further challenges to make the Korea's industrial innovation system effective. The list of such challenges includes strengthening upstream sectors of currently leading industries, expanding the innovation base to SME and promoting technological co-operation between domestic firms and foreign firms.

  • PDF

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

An Experimental Study on Fine Dust Emissions near Special Modified Asphalt Pavement and Conventional Asphalt Pavement (특수개질 및 일반 아스팔트 포장체 도로변의 미세먼지 발생에 대한 실험적 연구)

  • Tae-Woo Kang;Hyeok-Jung Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.282-288
    • /
    • 2023
  • In this study, we analyzed the amount of roadside fine dust generated from newly constructed specially modified asphalt pavement and general asphalt pavement from existing roads. We collected the 1,000 g (100 g/day) of dust samples from the roadside of the express bus terminal and commercial facility area in Chungcheongnam-do's C site at three-day intervals during the summer of 2022 and 2023. The collected samples were separated from fine dust according to size in the 75-150 ㎛ range and, were separated only from Tire and Road Wear Particles through density separation. No.1-3 are general asphalt pavement section as an existing road. Fine dust and Tire and Road Wear Particles in No.1-3 were 24.27 g, 24.36 g, 0.53 g, and 0.53 g, respectively, and the quantitative results for 2022 and 2023 were similar. On the other hand, No.4-6 are newly constructed specially modified asphalt pavement section. Fine dust decreased by 14.8 % and tire and road wear particles decreased by 29.6 % in 2023 compared to 2022 in No.4-6. In addition, according to the results of thermogravimetric analysis, Tire and road wear particles in No.1-3 are tire and road components at 30 % and 70 %, respectively. And Tire and road wear particles in No.4-6 are tire and road components at 35 % and 65 % in 2023, respectively. From these results, it was confirmed that the newly constructed specially modified asphalt pavement can be effective in reducing roadside fine dust and Tire and Road Wear Particles. However, there may be some shortcomings in conclusive research results due to limited space and sample collection period. In the future, we plan to conduct various case studies.