• Title/Summary/Keyword: Quotient ring

Search Result 99, Processing Time 0.026 seconds

DERIVATIONS OF PRIME AND SEMIPRIME RINGS

  • Argac, Nurcan;Inceboz, Hulya G.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.5
    • /
    • pp.997-1005
    • /
    • 2009
  • Let R be a prime ring, I a nonzero ideal of R, d a derivation of R and n a fixed positive integer. (i) If (d(x)y+xd(y)+d(y)x+$yd(x))^n$ = xy + yx for all x, y $\in$ I, then R is commutative. (ii) If char R $\neq$ = 2 and (d(x)y + xd(y) + d(y)x + $yd(x))^n$ - (xy + yx) is central for all x, y $\in$ I, then R is commutative. We also examine the case where R is a semiprime ring.

Two Extensions of a Star Operation on D to the Polynomial Ring D[X]

  • Chang, Gyu Whan;Kim, Hwankoo
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.1
    • /
    • pp.23-32
    • /
    • 2021
  • Let D be an integral domain with quotient field K, X an indeterminate over D, ∗ a star operation on D, and Cl∗ (D) be the ∗-class group of D. The ∗w-operation on D is a star operation defined by I∗w = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with J∗ = D}. In this paper, we study two star operations {∗} and [∗] on D[X] defined by A{∗} = ∩P∈∗w-Max(D) ADP [X] and A[∗] = (∩P∈∗w-Max(D) AD[X]P[X]) ∩ AK[X]. Among other things, we show that Cl∗(D) ≅ Cl[∗](D[X]) if and only if D is integrally closed.

ON STRONGLY QUASI J-IDEALS OF COMMUTATIVE RINGS

  • El Mehdi Bouba;Yassine EL-Khabchi;Mohammed Tamekkante
    • Communications of the Korean Mathematical Society
    • /
    • v.39 no.1
    • /
    • pp.93-104
    • /
    • 2024
  • Let R be a commutative ring with identity. In this paper, we introduce a new class of ideals called the class of strongly quasi J-ideals lying properly between the class of J-ideals and the class of quasi J-ideals. A proper ideal I of R is called a strongly quasi J-ideal if, whenever a, b ∈ R and ab ∈ I, then a2 ∈ I or b ∈ Jac(R). Firstly, we investigate some basic properties of strongly quasi J-ideals. Hence, we give the necessary and sufficient conditions for a ring R to contain a strongly quasi J-ideals. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the primary ideals, the prime ideals and the maximal ideals. Finally, we give an idea about some strongly quasi J-ideals of the quotient rings, the localization of rings, the polynomial rings and the trivial rings extensions.

THE IDEAL CLASS GROUP OF POLYNOMIAL OVERRINGS OF THE RING OF INTEGERS

  • Chang, Gyu Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.571-594
    • /
    • 2022
  • Let D be an integral domain with quotient field K, Pic(D) be the ideal class group of D, and X be an indeterminate. A polynomial overring of D means a subring of K[X] containing D[X]. In this paper, we study almost Dedekind domains which are polynomial overrings of a principal ideal domain D, defined by the intersection of K[X] and rank-one discrete valuation rings with quotient field K(X), and their ideal class groups. Next, let ℤ be the ring of integers, ℚ be the field of rational numbers, and 𝔊f be the set of finitely generated abelian groups (up to isomorphism). As an application, among other things, we show that there exists an overring R of ℤ[X] such that (i) R is a Bezout domain, (ii) R∩ℚ[X] is an almost Dedekind domain, (iii) Pic(R∩ℚ[X]) = $\oplus_{G{\in}G_{f}}$ G, (iv) for each G ∈ 𝔊f, there is a multiplicative subset S of ℤ such that RS ∩ ℚ[X] is a Dedekind domain with Pic(RS ∩ ℚ[X]) = G, and (v) every invertible integral ideal I of R ∩ ℚ[X] can be written uniquely as I = XnQe11···Qekk for some integer n ≥ 0, maximal ideals Qi of R∩ℚ[X], and integers ei ≠ 0. We also completely characterize the almost Dedekind polynomial overrings of ℤ containing Int(ℤ).

*-NOETHERIAN DOMAINS AND THE RING D[X]N*, II

  • Chang, Gyu-Whan
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.49-61
    • /
    • 2011
  • Let D be an integral domain with quotient field K, X be a nonempty set of indeterminates over D, * be a star operation on D, $N_*$={f $\in$ D[X]|c(f)$^*$= D}, $*_w$ be the star operation on D defined by $I^{*_w}$ = ID[X]${_N}_*$ $\cap$ K, and [*] be the star operation on D[X] canonically associated to * as in Theorem 2.1. Let $A^g$ (resp., $A^{[*]g}$, $A^{[*]g}$) be the global (resp.,*-global, [*]-global) transform of a ring A. We show that D is a $*_w$-Noetherian domain if and only if D[X] is a [*]-Noetherian domain. We prove that $D^{*g}$[X]${_N}_*$ = (D[X]${_N}_*$)$^g$ = (D[X])$^{[*]g}$; hence if D is a $*_w$-Noetherian domain, then each ring between D[X]${_N}_*$ and $D^{*g}$[X]${_N}_*$ is a Noetherian domain. Let $\tilde{D}$ = $\cap${$D_P$|P $\in$ $*_w$-Max(D) and htP $\geq$2}. We show that $D\;\subseteq\;\tilde{D}\;\subseteq\;D^{*g}$ and study some properties of $\tilde{D}$ and $D^{*g}$.

CLASS FIELDS FROM THE FUNDAMENTAL THOMPSON SERIES OF LEVEL N = o(g)

  • CHOI So YOUNG;Koo JA KYUNG
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.203-222
    • /
    • 2005
  • Thompson series is a Hauptmodul for a genus zero group which lies between $\Gamma$o(N) and its normalizer in PSL2(R) ([1]). We construct explicit ring class fields over an imaginary quadratic field K from the Thompson series $T_g$($\alpha$) (Theorem 4), which would be an extension of [3], Theorem 3.7.5 (2) by using the Shimura theory and the standard results of complex multiplication. Also we construct various class fields over K, over a CM-field K (${\zeta}N + {\zeta}_N^{-1}$), and over a field K (${\zeta}N$). Furthermore, we find an explicit formula for the conjugates of Tg ($\alpha$) to calculate its minimal polynomial where $\alpha$ (${\in}{\eta}$) is the quotient of a basis of an integral ideal in K.

UPPERS TO ZERO IN POLYNOMIAL RINGS WHICH ARE MAXIMAL IDEALS

  • Chang, Gyu Whan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.2
    • /
    • pp.525-530
    • /
    • 2015
  • Let D be an integrally closed domain with quotient field K, X be an indeterminate over D, $f=a_0+a_1X+{\cdots}+a_nX^n{\in}D[X]$ be irreducible in K[X], and $Q_f=fK[X]{\cap}D[X]$. In this paper, we show that $Q_f$ is a maximal ideal of D[X] if and only if $(\frac{a_1}{a_0},{\cdots},\frac{a_n}{a_0}){\subseteq}P$ for all nonzero prime ideals P of D; in this case, $Q_f=\frac{1}{a_0}fD[X]$. As a corollary, we have that if D is a Krull domain, then D has infinitely many height-one prime ideals if and only if each maximal ideal of D[X] has height ${\geq}2$.

ON STRONGLY 1-ABSORBING PRIMARY IDEALS OF COMMUTATIVE RINGS

  • Almahdi, Fuad Ali Ahmed;Bouba, El Mehdi;Koam, Ali N.A.
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.5
    • /
    • pp.1205-1213
    • /
    • 2020
  • Let R be a commutative ring with 1 ≠ 0. In this paper, we introduce a subclass of the class of 1-absorbing primary ideals called the class of strongly 1-absorbing primary ideals. A proper ideal I of R is called strongly 1-absorbing primary if whenever nonunit elements a, b, c ∈ R and abc ∈ I, then ab ∈ I or c ∈ ${\sqrt{0}}$. Firstly, we investigate basic properties of strongly 1-absorbing primary ideals. Hence, we use strongly 1-absorbing primary ideals to characterize rings with exactly one prime ideal (the UN-rings) and local rings with exactly one non maximal prime ideal. Many other results are given to disclose the relations between this new concept and others that already exist. Namely, the prime ideals, the primary ideals and the 1-absorbing primary ideals. In the end of this paper, we give an idea about some strongly 1-absorbing primary ideals of the quotient rings, the polynomial rings, and the power series rings.

INVARIANT RINGS AND REPRESENTATIONS OF SYMMETRIC GROUPS

  • Kudo, Shotaro
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.4
    • /
    • pp.1193-1200
    • /
    • 2013
  • The center of the Lie group $SU(n)$ is isomorphic to $\mathbb{Z}_n$. If $d$ divides $n$, the quotient $SU(n)/\mathbb{Z}_d$ is also a Lie group. Such groups are locally isomorphic, and their Weyl groups $W(SU(n)/\mathbb{Z}_d)$ are the symmetric group ${\sum}_n$. However, the integral representations of the Weyl groups are not equivalent. Under the mod $p$ reductions, we consider the structure of invariant rings $H^*(BT^{n-1};\mathbb{F}_p)^W$ for $W=W(SU(n)/\mathbb{Z}_d)$. Particularly, we ask if each of them is a polynomial ring. Our results show some polynomial and non-polynomial cases.

Kaplansky-type Theorems, II

  • Chang, Gyu-Whan;Kim, Hwan-Koo
    • Kyungpook Mathematical Journal
    • /
    • v.51 no.3
    • /
    • pp.339-344
    • /
    • 2011
  • Let D be an integral domain with quotient field K, X be an indeterminate over D, and D[X] be the polynomial ring over D. A prime ideal Q of D[X] is called an upper to zero in D[X] if Q = fK[X] ${\cap}$ D[X] for some f ${\in}$ D[X]. In this paper, we study integral domains D such that every upper to zero in D[X] contains a prime element (resp., a primary element, a t-invertible primary ideal, an invertible primary ideal).