• Title/Summary/Keyword: Quick-bird

Search Result 90, Processing Time 0.022 seconds

Comparative Analysis of SWAT Generated Streamflow and Stream Water Quality Using Different Spatial Resolution Data (SWAT모형에서 공간 입력자료의 다양한 해상도에 따른 수문-수질 모의결과의 비교분석)

  • Park, Jong-Yoon;Lee, Mi-Seon;Park, Geun-Ae;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.11
    • /
    • pp.1079-1094
    • /
    • 2008
  • This study is to evaluate the impact of varying spatial resolutions on the uncertainty of Soil and Water Assessment Tool (SWAT) predicted streamflow, non-point source (NPS) pollution loads transport in a small agricultural watershed (1.21 $km^2$) for three cases of model input; Case A is the combination of 2 m DEM, QuickBird land use, Case B is the combination of 10 m DEM, 1/25,000 land use, and Case C is the combination of 30 m DEM, Landsat land use, soil data is used 1/25,000 for three cases respectively. The model was calibrated for 2 years (1999-2000) using daily streamflow and monthly water quality records, and verified for another 2 years (2001-2002). The average Nash and Sutcliffe model efficiency was 0.59 for streamflow and RMSE were 2.08, 4.30 and 0.70 tons/yr for sediment, T-N and T-P respectively. The model was run for a small agricultural watershed with three cases of spatial input data. The hydrological results showed that output uncertainty was biggest by spatial resolution of land use. Streamflow increase the watershed average CN value of QucikBird land use was 0.4 and 1.8 higher than those of 1/25,000 and Landsat land use caused increase of streamflow. On the other hand, The NPS loadings from the model prediction showed that the sediment, T-N and T-P of QuickBird land use (Case A) showed 23.7 %, 43.3 % and 48.4 % higher value than 1/25,000 land use (Case B) and 50.6 %, 50.8 % and 56.9 % higher value than Landsat land use (Case C) respectively.

A Study on the Environmental Changes of Coastal Area in Oncheon Gun of Pyeongnam Province by Neural Network Classification Using Satellite Images, West Coast of North Korea (위성영상의 신경망 분류에 의한 평안남도 온천군 해안지역의 환경 변화 연구)

  • Lee, Min-Boo;Kim, Nam-Shin;Lee, Gwang-Ryul;Han, Uk
    • Journal of the Korean association of regional geographers
    • /
    • v.11 no.2
    • /
    • pp.278-290
    • /
    • 2005
  • This study deals with the geomorphic, environmental and land use changes by comparative analysis using Landsat TM images of 1988 year and ETM ones of 2002 year, partly together with the new Quick Bird images having 60cm resolution for more detail analysis, focusing on the Oncheon gun(county) in Pyeongnam Province, west coast zone of North Korea. The main analysis methodology is neural network classification, which is more advanced techniques for the classification of land cover and land use, with higher accuracy rate and lower errors. The TM images of 1988 year show, mainly, the on-construction tide embank for the reclamation at Gwangryangman bay and salt farm on the reclaimed tidal flat. But, ETM images of 2002 year present stabilized reclaimed land, salt farm and rice field, recently transformed from salt farm. Especially, new tidal land has been naturally developed on the coastal shallow out of tide embank and salt farm. The results of the study may help to database coastal environmental changes and to support for reasonable and productive land use of North Korea, and to manage and plan unified national land in the near future.

  • PDF

RPC MODEL FOR ORTHORECTIFYING VHRS IMAGE

  • Ke, Luong Chinh
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.631-634
    • /
    • 2006
  • Three main important sources for establishing GIS are the orthomap in scale 1:5 000 with Ground Sampling Distance of 0,5m; DEM/DTM data with height error of ${\pm}$1,0m and topographic map in scale 1: 10 000. The new era with Very High Resolution Satellite (VHRS) images as IKONOS, QuickBird, EROS, OrbView and other ones having Ground Sampling Distance (GSD) even lower than 1m has been in potential for producing orthomap in large scale 1:5 000, to update existing maps, to compile general-purpose or thematic maps and for GIS. The accuracy of orthomap generated from VHRS image affects strongly on GIS reliability. Nevertheless, orthomap accuracy taken from VHRS image is at first dependent on chosen sensor geometrical models. This paper presents, at fist, theoretical basic of the Rational Polynomial Coefficient (RPC) model installed in the commercial ImageStation Systems, realized for orthorectifying VHRS images. The RPC model of VHRS image is a replacement camera mode that represents the indirect relation between terrain and its image acquired on the flight orbit. At the end of this paper the practical accuracies of IKONOS and QuickBird image orthorectified by RPC model on Canadian PCI Geomatica System have been presented. They are important indication for practical application of producing digital orthomaps.

  • PDF

Mapping of land cover using QuickBird satellite data based on object oriented and ISODATA classification methods - A comparison for micro level planning (Quickbird 영상을 이용한 객체지향 및 ISODATA 분류기법기반 토지피복분류-세부레벨계획을 위한 비교분석)

  • Jayakumar, S.;Lee, Jung-Bin;Heo, Joon
    • Proceedings of the KSRS Conference
    • /
    • 2007.03a
    • /
    • pp.113-119
    • /
    • 2007
  • This article deals mainly with two objectives viz, 1) the potentiality of very high-resolution(VHR) multi-spectral and pan chromatic QuickBird satellite data in resources mapping over moderate resolution satellite data (IRS LISS III) and 2) the advantages of using object oriented classification method of eCognition software in land use and land cover analysis over the ISODATA classification method. These VHR data offers widely acceptable metric characteristics for cartographic updating and increase our ability to map land use in geometric detail and improve accuracy of local scale investigations. This study has been carried out in the Sukkalampatti mini-watershed, which is situated in the Eastern Ghats of Tamil Nadu, India. The eCognition object oriented classification method succeeded in most cases to achieve a high percentage of right land cover class assignment and it showed better results than the ISODATA pixel based one, as far as the discrimination of land cover classes and boundary depiction is concerned.

  • PDF

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.

MODIFIED DOUBLE SNAKE ALGORITHM FOR ROAD FEATURE UPDATING OF DIGITAL MAPS USING QUICKBIRD IMAGERY

  • Choi, Jae-Wan;Kim, Hye-Jin;Byun, Young-Gi;Han, You-Kyung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.234-237
    • /
    • 2007
  • Road networks are important geospatial databases for various GIS (Geographic Information System) applications. Road digital maps may contain geometric spatial errors due to human and scanning errors, but manually updating roads information is time consuming. In this paper, we developed a new road features updating methodology using from multispectral high-resolution satellite image and pre-existing vector map. The approach is based on initial seed point generation using line segment matching and a modified double snake algorithm. Firstly, we conducted line segment matching between the road vector data and the edges of image obtained by Canny operator. Then, the translated road data was used to initialize the seed points of the double snake model in order to refine the updating of road features. The double snake algorithm is composed of two open snake models which are evolving jointly to keep a parallel between them. In the proposed algorithm, a new energy term was added which behaved as a constraint. It forced the snake nodes not to be out of potential road pixels in multispectral image. The experiment was accomplished using a QuickBird pan-sharpened multispectral image and 1:5,000 digital road maps of Daejeon. We showed the feasibility of the approach by presenting results in this urban area.

  • PDF

THE LAND COVER MAPPING IN NORTH KOREA USING MODIS IMAGE;THE CLASSIFICATION ACCURACY ENHANCEMENT FOR INACCESSIBLE AREA USING GOOGLE EARTH

  • Cha, Su-Young;Park, Chong-Hwa
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.341-344
    • /
    • 2007
  • A major obstacle to classify and validate Land Cover maps is the high cost of generating reference data or multiple thematic maps for subsequent comparative analysis. In case of inaccessible area such as North Korea, the high resolution satellite imagery may be used as in situ data so as to overcome the lack of reliable reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird (0.6m) of North Korea obtained from Google Earth data provided thru internet. Monthly NDVI images of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes; coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water and built-up area. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional in situ data collection on the site where the accessibility is severely limited.

  • PDF

Investigating Ways of Developed and Undeveloped Features from Satellite Images -Balancing Coastal Development and Preservation- (위성영상을 이용한 개발과 미개발 지역의 구분을 위한 탐색적 방법)

  • Yang, Byung-Yun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.189-197
    • /
    • 2012
  • This research attempted to find possibilities of the practical use utilizing geospatial methods for the balanced promotion of sustainable coastal development and preservation through a case study of Jekyll Island, one of Georgia's barrier islands. In response, this research provided ways for practical use in sustainable development and preservation plans. First this research thoroughly investigated the 1996 master plan of Jekyll Island and tried to recalculate developed and undeveloped areas. Second, new estimations for developed areas were investigated through field survey. Third, this research proposed the use of the satellite images with different levels of spatial resolutions and tested different classification schemes to find possibilities for practical use. For these purposes, first, we classified developed and undeveloped features by manual digitization using an aerial photo image with 0.5m spatial resolution. Second, a Landsat 7 ETM+ and a QuickBird satellite images with mid- and high-levels of spatial resolutions were applied to identify developed and undeveloped areas using both the National Land Cover Data (NLCD) and the Coastal Change Analysis Program (CCAP) classification schemes. Also, GEOBIA (Geographic Object-Based Image Analysis) was conducted to accurately identify developed and undeveloped areas.

The Utilization of Google Earth Images as Reference Data for The Multitemporal Land Cover Classification with MODIS Data of North Korea

  • Cha, Su-Young;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.483-491
    • /
    • 2007
  • One of the major obstacles to classify and validate Land Cover maps is the high cost of acquiring reference data. In case of inaccessible areas such as North Korea, the high resolution satellite imagery may be used for reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird high resolution imagery of North Korea that can be obtained from Google Earth data via internet for reference data of land cover classification. Monthly MODIS NDVI data of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes - coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water, and built-up areas - by careful use of reference data obtained through visual interpretation of the high resolution imagery. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional reference data collection on the site where the accessibility is severely limited.