• 제목/요약/키워드: Quick Torque Control

검색결과 40건 처리시간 0.023초

유도전동기의 토크 고속 응답제어를 위한 2차저항 동정법 (An Identification Method of Secondary Resistance for Quick Torque Control in Induction Motors)

  • ;변정환
    • 한국해양공학회지
    • /
    • 제11권4호
    • /
    • pp.197-204
    • /
    • 1997
  • 최근 유도전동기를 이용한 가변속 구동시스템의 수요가 자동화 및 에너지의 효율적 이용 측면에서 육상 산업체는 물론, 선박 및 해양플랜트에도 확산되고 있다. 유도전동기의 토크 고속제어법은 가변속 구동시스템의 고성능화를 위한 필수과제로서, 제어법 적용시 2차저항의 동정문제가 대단히 중요하다. 본 논문에서는 유도전동기의 토크 고속 응답제어계에 있어서 고정도의 토크응답을 실현하기 위한 2차저항 동정법을 제안한다. 제안된 방법은 모터의 회로방정식으로부터 유도되며, 모터의 인가전압과 1차전류 정보로부터 간단히 구현된다. 제안된 방안의 타당성을 검증하기 위하여 펄스폭변조방식의 전압형 인버터를 상정한 수치 시뮬레이션을 수행하며 그 결과를 통하여 제안방식의 유용성을 입증한다.

  • PDF

부하토오크 관측기를 이용한 영구자석 동기전동기의 강인성 속도 제어 (Robust Speed Control of Vector Controlled PMSM with Load Torque Observer)

  • 윤병도;김윤호;김원오;윤명균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.559-563
    • /
    • 1991
  • Permanent magnet synchronous motor (PMSM) is receiving increased attention for servo drive applications in recent years because of its high torque to inertia ratio, superior power density and high efficiency. Vector-controlled PMSM has the same operating characteristics as separately excited dc motor. The drive system of servo motor is requested to have an accurate response for the speed reference and a quick recovery for the disturbance such as load torque. However the dynamics of PMSM drive change greately by parameter variations. Morever, when the unkown and inaccessible disturbances are imposed on PMSM, the drive system is given a significant effect by them. As a result, the drive system with both a fast drive performance and a reduced sensitivity to parameter variations is requested. In this paper, the robust control system of PMSM with torque feedforward using load torque observer is presented. In the proposed system, load torque is estimated by the reduced order observer, and the robust control system against load torque variation is realized using the torque feedforward. Moreover, the design of speed controller with the torque observer is discussed. Simulation results show that the proposed method is effective for suppression of parameter variations and load disturbance.

  • PDF

Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors

  • Sekour, M'hamed;Hartani, Kada;Draou, Azeddine;Allali, Ahmed
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.530-543
    • /
    • 2013
  • This paper describes a control scheme of speed sensorless fuzzy direct torque control (FDTC) of permanent magnet synchronous motor for electric vehicle (EV). Electric vehicle requires fast torque response and high efficiency of the drive. Speed sensorless FDTC In-wheel PMSM drives without mechanical speed sensors at the motor shaft have the attractions of low cost, quick response and high reliability in electric vehicle application. This paper presents a new approach to estimate the speed of in-wheel electrical vehicles based on Model Reference Adaptive System (MRAS). The direct torque control suffers in low speeds due to the effect of changes in stator resistance on the flux measurements. To improve the system performance at low speeds, a PI-fuzzy resistance estimator is proposed to eliminate the error due to changes in stator resistance. High performance sensorless drive of the in-wheel motor based on MRAS with on line stator resistance tuning is established for four motorized wheels electric vehicle and the whole system is simulated by matalb/simulink. The simulation results show the effectiveness of the new control strategy. This proposed control strategy is extensively used in electric vehicle application.

3상(相) 유도전동기(誘導電動機)의 토크 및 속도제어(速度制御)에 관한 연구(硏究) (A Study on Torque and Speed Control of Three Phase Induction Motor)

  • 최교호;정석권;양주호
    • 수산해양교육연구
    • /
    • 제7권1호
    • /
    • pp.111-126
    • /
    • 1995
  • In general, the electromagnetic transient phenomenon always exists in induction motor(IM) with the torque change. The control performance of IM is very worse than that of D.C motor owing to this transient phenomenon. So many studies about the elimination methods of the transient phenomenon have been making progress. Interesting methods of them are the Field acceleration method(FAM) and the method of impulse addition on the input voltage at the time point of torque change. In this paper, first, the circuit equation of IM is derived from the phase segregation method. The torque equation consisted of the stator and rotor currents is derived from the solving of the circuit equation. As we well known, the transient terms exist in this the torque equation. The method of impulse addition on the input voltage at the instance of torque change is confirmed theoretically for the elimination of the transient phenomenon. With the base on it, the author proposed a real time algorithm to eliminate the transient terms. The control system is consisted of the PI controller with the feedforward of torque change. The author could confirm that the quick stepwise responses of torque and speed can be obtained from response simulations.

  • PDF

Control Moment Gyroscope Torque Measurements Using a Kistler Table for Microsatellite Applications

  • Goo-Hwan Shin;Hyosang Yoon;Hyeongcheol Kim;Dong-Soo Choi;Jae-Suk Lee;Yeong-Ho Shin;EunJi Lee;Sang-sub Park;Seokju Kang
    • 우주기술과 응용
    • /
    • 제4권1호
    • /
    • pp.12-26
    • /
    • 2024
  • Attitude control of a satellite is very important to ensure proper for mission performance. Satellites launched in the past had simple missions. However, recently, with the advancement of technology, the tasks to be performed have become more complex. One example relies on a new technology that allows satellites quickly alter their attitude while orbiting in space. Currently, one of the most widely used technologies for satellite attitude control is the reaction wheel. However, the amount of torque generated by reaction wheels is too low to facilitate quick maneuvers by the satellite. One way to overcome this is to implement posture control logic using a control moment gyroscope (CMG). Various types of CMGs have been applied to space systems, and CMGs are currently mounted on large-scale satellites. However, although technological advancements have continued, the market for CMGs applicable to, small satellites remains in its early stages. An ultra-small CMG was developed for use with small satellites weighing less than 200 kg. The ultra-small CMG measured its target performance outcomes using a precision torque-measuring device. The target performance of the CMG, at 800 mNm, was set through an analysis. The final torque of the CMG produced through the design after the analysis was 821mNm, meaning that a target tolerance level of 10% was achieved.

직접 토크제어의 토크맥동 저감을 위한 속도검출기 없는 유도전동기 제어 시스템 (A Speed Sensorless Induction Motor Control System using Direct Torque Control for Torque Ripple Reduction)

  • 김남훈;김민호;김민회;김동희;황돈하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.986-988
    • /
    • 2001
  • This paper presents a digitally speed sensorless control system for induction motor with direct torque control (DTC). Some drawbacks of the classical DTC are the relatively large torque ripple in a low speed range and notable current pulsation during steady state. They are reflected speed response and increased acoustical noise. In this paper, the DTC quick response are preserved at transient state, while better qualify steady state performance is produced by space vector modulation (SVM). The system are closed loop stator flux and torque observer for wide speed range that inputs are currents and voltages sensing of motor terminal, model reference adaptive control (MRAC) with rotor flux linkages for the speed fuming signal at low speed range, two hysteresis controllers and optimal switching look-up table. Simulation results of the suggest system for the 2.2 [kW] general purposed induction motor are presented and discussed.

  • PDF

Fast Switching Direct Torque Control Using a Single DC-link Current Sensor

  • Wang, Wei;Cheng, Ming;Wang, Zheng;Zhang, Bangfu
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.895-903
    • /
    • 2012
  • This paper presents a fast switching direct torque control (FS-DTC) using only a single DC-link current sensor. In FS-DTC, six new active voltage complex space vectors (CSVs) are synthesized by the conventional active voltage space vectors (SVs). The corresponding sectors are rotated in the anticlockwise direction by 30 degrees. A selection table is defined to select the CSVs. Based on the "Different Phase Mode", the output sequence of the selected CSV is optimized. Accordingly, a reconstruction method is proposed to acquire the phase currents. The core of the FS-DTC is that all of the three phase currents can be reliably reconstructed during every two sampling periods, which is the result of the fast switching between different phases. The errors between the reconstructed and actual currents are strictly limited in one sampling period. The FS-DTC has the advantages of the standard DTC scheme such as simple structure, quick torque response and robustness. As can be seen in the analysis, the FS-DTC can be thought of as an equivalent standard DTC scheme with 86.6% of the maximum speed, 173.2% of the torque ripple, and 115% of the response time of the torque. Based on a dSPACE DS1103 controller, the FS-DTC is implemented in an induction machine drive system. The results verify the effectiveness of the FS-DTC.

퍼지 가변스위칭 섹터기법를 이용한 유도전동기의 직접토크 제어 (Direct Torque Control for Induction Motors Using Fuzzy Variable Switching Sector)

  • 윤인식;서영민;류지수;이기상;홍순찬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.233-233
    • /
    • 2000
  • Direct torque control (DTC) scheme provides a very quick torque response without the complex field-orientation block and inner current regulation loop. DTC is known as an appropriate scheme for high power induction motet drives because it can be used at lower switching frequency. There are two major drawbacks with the application of DTC schemes : one is large current harmonics due to flux drooping in a low speed range, the other is that the inverter switching frequency is varying according to motor parameters and operating speed. Switching devices in the power electronics drives should be supported for relatively high switching frequency. In this paper, a P-type fuzzy controller to realize the variable switching sector scheme and a PID-type fuzzy switching frequency regulator are adopted. A meaningful contribution of this paper is to propose a simple realization scheme of the fuzzy switching frequency regulator. Simulation results show the effectiveness of those propositions.

  • PDF

반송용 SLIM의 추력제에에 의한 운전특성 (A Operating by the Direct Thrust Control of SLIM in Conveyor System)

  • 우정인;노태균;신동률;노인배
    • 조명전기설비학회논문지
    • /
    • 제12권3호
    • /
    • pp.59-66
    • /
    • 1998
  • In this paper, the thrust control of PWM Inverter-Fed SLIM(Single-sided Linear Induction Motor) is achieved with Space Vector control and PI control. The trembling of air gap length which is occurred between the primary winding core and the secondary structure of the SLIM must be minimized in order to get quick response characteristics. First, the equivalent circuits and voltage equations of SLIM are shown on th suitable d-q axis which analyze characteristics of the thrust and the normal force. Also, modeling and analysis of the equivalent circuits transferred d-q axis are able to make robust transient torque from the current regulation in the equivalent circuit. These results exemplified the direct drive of SLIM with the reference speed and torque were verified by experiments.

  • PDF

유도전동기 직접토크제어를 위한 새로운 퍼지 가변 스위칭섹터 기법 (New Fuzzy Variable Switching Sector Technique for DTC on Induction Motor Drives)

  • 柳 志 帥;洪 淳 瓚;李 起 常
    • 전력전자학회논문지
    • /
    • 제7권2호
    • /
    • pp.137-148
    • /
    • 2002
  • 직접토크제어 기법은 벡터제어계 설계 및 운전시 요구되는 복잡한 좌표변환과 전류제어루프가 불필요하며, 빠른 토크응답을 얻을 수 있기 때문에 벡터제어 기법에 버금가는 유도전동기의 고성능 제어기법으로 인정되고 있다. 본 논문에서는 직접토크제어 기법 적용시 중요한 어려움의 하나로 지적되고 있는 저속영역에서의 자속저하 및 이로 인한 전류고조파의 증가 문제를 해결하기 위한 대책으로서 퍼지 가변 스위칭섹터 기법과 이 기법의 실시간 적용을 위한 실현방법을 제안하였다. 제안된 스위칭섹터 기법을 포함한 유도전동기 제어시스템의 실험적 성능을 고찰하기 위하여 DSP를 이용한 제어보드를 제작하였다. 시뮬레이션과 실험 결과는 제안된 퍼지 가변스위칭 섹터 기법을 도입함으로서 유도전동기 드라이브의 성능이 현저히 개선됨을 보여준다.