• Title/Summary/Keyword: Queue Management Mechanisms (AQM)

Search Result 3, Processing Time 0.017 seconds

Improve ARED Algorithm in TCP/IP Network (TCP/IP 네트워크에서 ARED 알고리즘의 성능 개선)

  • Nam, Jae-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.3
    • /
    • pp.177-183
    • /
    • 2007
  • Active queue management (AQM) refers to a family of packet dropping mechanisms for router queues that has been proposed to support end-to-end congestion control mechanisms in the Internet. The proposed AQM algorithm by the IETF is Random Early Detection (RED). The RED algorithm allows network operators simultaneously to achieve high throughput and low average delay. However. the resulting average queue length is quite sensitive to the level of congestion. In this paper, we propose the Refined Adaptive RED(RARED), as a solution for reducing the sensitivity to parameters that affect RED performance. Based on simulations, we observe that the RARED scheme improves overall performance of the network. In particular, the RARED scheme reduces packet drop rate and improves goodput.

  • PDF

Performance Analysis of TCP Variants using AQM and ECN (AQM과 ECN을 사용한 TCP 변종의 성능 분석)

  • Matten, Ahmad;Anwar, Adnan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.1
    • /
    • pp.129-137
    • /
    • 2016
  • Transmission Control Protocol as a transport layer protocol provides steady data transfer service. There are some serious concerns about the performance of TCP over diverse networks. The vital concern in TCP network environment is congestion which may occur due to quick transmission rates or because of large number of new connections entering the network at the same time. Size of queues in routers grows thus resulting in packet drops. Retransmission of the dropped packets, and reduced throughput can prove costly. Explicit Congestion Notification (ECN) in conjunction with Active Queue Management mechanisms (AQM) such as Random early detection (RED) is used for packet marking rather than dropping. In IP packet header ECN bits can be added as a sign of congestion thus avoiding needless packet drops. The proposed ECN and AQM mechanism can be implemented with help of ns2 simulator and the performance can be tested on different TCP variants.

A Modified Random Early Detection Algorithm: Fuzzy Logic Based Approach

  • Yaghmaee Mohammad Hossein
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.337-352
    • /
    • 2005
  • In this paper, a fuzzy logic implementation of the random early detection (RED) mechanism [1] is presented. The main objective of the proposed fuzzy controller is to reduce the loss probability of the RED mechanism without any change in channel utilization. Based on previous studies, it is clear that the performance of RED algorithm is extremely related to the traffic load as well as to its parameters setting. Using fuzzy logic capabilities, we try to dynamically tune the loss probability of the RED gateway. To achieve this goal, a two-input-single-output fuzzy controller is used. To achieve a low packet loss probability, the proposed fuzzy controller is responsible to control the $max_{p}$ parameter of the RED gateway. The inputs of the proposed fuzzy controller are 1) the difference between average queue size and a target point, and 2) the difference between the estimated value of incoming data rate and the target link capacity. To evaluate the performance of the proposed fuzzy mechanism, several trials with file transfer protocol (FTP) and burst traffic were performed. In this study, the ns-2 simulator [2] has been used to generate the experimental data. All simulation results indicate that the proposed fuzzy mechanism out performs remarkably both the traditional RED and Adaptive RED (ARED) mechanisms [3]-[5].