• Title/Summary/Keyword: Question-answering system

검색결과 156건 처리시간 0.031초

인공지능 기법을 이용한 워크스테이션 조작 지시용 S/W 개발에 관한 연구 (A Study on Guidance System for Work Station using AI Techniques)

  • 문동섭;김종형;김영섬;김한우;최병욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(II)
    • /
    • pp.1042-1045
    • /
    • 1987
  • This paper describes a User Guidance System that extracts Conceptual Structure from the input sentence by use of en theory and performs Question Answering in Teletex Manual domain. It uses Frame typed knowledge base and Frame recognizer as Link procedure between CD structure and Frame controller.

  • PDF

인공지능 기법을 이용한 워크스테이션 조작지사용 S/W 개발에 관한 연구 (A Study on guidance System for Workstation Using AI Techniques)

  • ;문동섭;김종형;김한우;최병욱
    • 대한전자공학회논문지
    • /
    • 제25권2호
    • /
    • pp.168-175
    • /
    • 1988
  • This paper describes a User guidance System aimed for user-friendly workstation guider that extracts Conceptual Structure from the input sentence by use of CE theory and performs Question Answering in Teletex Manual domain. It uses Frame typed knowledge base and CD recognizer as link procedure between CE structure and Frame controller.

  • PDF

하이브리드 방법의 사용자 질의 의도 분류 (A Hybrid Method for classifying User's Asking Points)

  • Harksoo Kim;An, Young Hun;Jungyun Seo
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제30권1_2호
    • /
    • pp.51-57
    • /
    • 2003
  • 질의응답 시스템이 올바른 답변을 제시하기 위해서는 사용자의 의도를 정확하고 강건하게 파악하는 것이 매우 중요하다. 이러한 요구 사항을 만족시키기 위해서 본 논문에서는 실용적 실의응답 시스템을 위한 질의 유형 분류기를 제안한다 제안된 실의 유형 분류기는 규칙 기반의 방법과 통계 기반의 방법을 접목시킨 하이브리드 방법을 사용한다. 제안된 방법을 사용함으로써 수동으로 규칙을 작성하는 시간을 줄일 수 있었고 정확률을 향상시킬 수 있었으며 안정성을 보장받을 수 있었다 제안된 방법에 대한 실험에서 질의 유형을 분류하는데 80%의 정확률을 얻었다.

상호작용 증진을 위한 동적인 Q&A 게시판의 설계 및 구현 (Design and Implementation of Dynamic Q&A Bulletin Board System for Enhancement of Interaction)

  • 윤소영;이지영
    • 정보학연구
    • /
    • 제4권2호
    • /
    • pp.37-49
    • /
    • 2001
  • 본 연구는 웹 기반 수업에서 상호작용을 위한 수단으로 사용되고 있는 Q&A(Question and Answer) 게시판에 동적인 기능을 추가하여 학습자에게는 즉각적인 응답을 주고, 교수자에게는 답변에 대한 부담감을 해소하고자 하였다. 또한 이를 통하여 웹 기반 수업에서 상호작용 증진 효과를 얻고자 하였다. 구현한 동적인 Q&A 게시판은 기존 Q&A게시판의 단점인 질문을 게시하고 교수자가 확인하여 답변할 때까지 기다려야 했던 점을 개선하여 교수자가 미리 구축해놓은 답변 데이터베이스와 인터넷 검색엔진에서 검색한 결과를 즉각적으로 응답할 수 있게 하였다.

  • PDF

질의응답시스템의 성능 평가를 위한 테스트컬렉션 구축 (Construction of Test Collection for Evaluation of Question Answering System)

  • 이경순;김재호;최기선
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 한글 및 한국어 정보처리
    • /
    • pp.190-197
    • /
    • 2000
  • 본 연구에서는 사용자의 질의에 대해 대답을 제시하는 질의응답시스템의 평가를 위한 테스트컬렉션을 구축하였다. 질의응답시스템 평가를 위한 테스트컬렉션은 207,067개의 문서, 90개의 질의, 각 질의에 대한 적합성 판정 집합으로 구성되어 있다. 문서집합은 신문기사로 SGML형식으로 가공되었고, 질의는 다양한 유형의 질의와 변형질의를 포함한다. 적합성 판정 집합은 각 질의에 대해서 문서에 대답을 포함하는지의 여부에 따라 적합/부적합으로 판정하였고, 적합한 문서에 대해서는 대답을 표시하였다. 본 연구를 통해 구축된 질의응답시스템 평가를 위한 테스트컬렉션은 질의응답시스템의 객관적인 신뢰성 평가를 위한 기반을 마련하였다.

  • PDF

온라인가나다를 위한 주제 분류 기반 유사 질문 검색 시스템 (Similar Question Search System for online Q&A for the Korean Language Based on Topic Classification)

  • 문정민;송영호;진지환;이현섭;이현아
    • 인지과학
    • /
    • 제26권3호
    • /
    • pp.263-278
    • /
    • 2015
  • 국립국어원의 온라인가나다 서비스는 한국어에 대한 질문을 등록하면 전문가가 답변을 작성하는 인터넷 서비스이다. 이러한 서비스는 유사한 질문이 자주 등록되는 문제점이 있다, 만일 새롭게 등록되는 질문과 유사한 질문을 자동으로 찾아 그 질문에 대한 답변을 등록 즉시 제공한다면, 질문자는 빠른 시간에 답변을 얻을 수 있고 서비스 관리자는 수동 답변 작성의 부담을 덜 수 있다. 본 논문에서는 온라인가나다의 특성을 분석하여 자주 질문되는 다섯 개의 주제 분류를 설정하고, 주제 분류 유사도와 함께 음소와 음절단위 수열유사도와 벡터 유사도를 결합하여 유사한 질문을 검색하는 시스템을 제안한다. 평가에서는 본 논문에서 제시한 주제 분류 정보를 활용하여 검색 정확률이 향상되는 결과를 얻었다. 최종 실험에서는 Mean Reciprocal Rank(MRR)가 0.756, 정답이 1위와 5위내에 검색될 확률은 각각 68.31%, 87.32%를 보였다.

질문 특성을 고려한 커뮤니티 질의응답 시스템(cQA) 자질 추출 방법 (Feature Extraction for Community Question Answering System(cQA) considering Question Characteristic)

  • 박용민;김보겸;이재성
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2014년도 제26회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.119-121
    • /
    • 2014
  • 커뮤니티 질의응답 시스템(cQA)은 기존에 구축된 '질문-답' 쌍에서 사용자의 질문과 비교하여 유사도 순으로 결과를 보여주는 시스템이다. 본 논문에서는 '국립국어원'의 질의응답 게시판에 적용 가능한 '커뮤니티 질의응답 시스템'을 소개하고, 국립국어원 질의응답 게시판의 질문 특성을 분석하여 cQA의 성능 향상을 위한 자질 추출 방법을 제시한다.

  • PDF

질의문 자동생성방식의 질의응답시스템의 설계 및 구축 (Design of Question Answering System with Automated Question Generation)

  • 김민경;김한준
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2008년도 한국컴퓨터종합학술대회논문집 Vol.35 No.1 (C)
    • /
    • pp.49-54
    • /
    • 2008
  • 질의응답시스템에서 사용자 질의로 입력된 자연어문장을 완벽하게 분석하는 것은 쉬운 일이 아니며, 사용자의 질의 의도의 불명확성으로 키워드 여러 개의 질의문이 존재할 수 있다. 본 논문에서는 질의를 하기 전에 사용자가 안게 되는 자연어 질의문의 작성 부담감을 줄이고, 키워드만으로 자신이 원하는 질의문을 선택할 수 있는 시스템을 제안하고자 한다. 제안 시스템은 평서문에서 자동으로 질의문을 생성한다. 질의문 생성은 장문형질의문생성과 단문형질의문생성으로 구분하며, 장문형질의문은 문장의 전체형태를 유지하면서 특정고유명사를 질의하는 것이고, 단문형질의문은 주어진 고유명사를 질의하는 최소한의 요소를 갖춘 단순 형태의 질의 문장이다. 또한 제안 시스템은 생성된 질의문이 유한 해답을 도출할 수 있는 의미있는 질의문을 선별하는 과정을 포함한다. 본 논문에서 제안한 방식이 사용자에게 의미있는 질의문을 제시하여주고 사용자가 원하는 질의문을 선택하게 함으로써 검색의 시간단축과 자연어문장 질의어 자체에 대한 고민을 해소시킬 수 있다. 또한 이는 자연어 문장처리의 한계를 극복할 수 있는 시스템을 구현할 수 있는 기반을 마련한 것이다.

  • PDF

질의응답 시스템을 위한 술어정보 기반 질의분석 (Predicate-based Question Analysis for Korean Question-Answering System)

  • 김원남;신승은;서영훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2004년도 제16회 한글.언어.인지 한술대회
    • /
    • pp.296-300
    • /
    • 2004
  • 질의 응답 시스템이 정확한 정답을 제시하기 위해서는 사용자가 요구하는 정답의 유형을 결정할 필요가 있다. 질의분석의 일반적인 접근법으로는 의문사 정보, 규칙 그리고 통계 정보에 기반한 방법들이 있다. 본 논문에서는 술어정보를 이용한 질의분석을 제안한다. 먼저 의문사 정보를 이용하여 상위정답유형을 결정하고 질의문의 술어 정보와 구문 구조 정보를 이용하여 초점단어(focus word)를 추출한다. 초점단어란 정답유형을 결정하는데 단서가 되는 단어로써, 추출된 초점단어에 의해 75개의 하위정답유형 중 하나가 결정된다. 실험에 앞서 정답 유형별로 6개의 상위범주와 75개의 하위범주를 정의하였으며, 실험에는 학습 데이터의 일부와 일반 Web에서 수집한 테스트 데이터가 사용되었다. 실험결과 상위범주는 97.6%, 하위범주는 77.8%의 정확도를 보였으며 초점단어는 92.5%의 정확도를 보였다.

  • PDF

질의 응답 시스템에서 질의 카테고리별 개념리스트 구축에 기반한 의미적 질의 확장 (Semantic Query Expansion based on a Question Category Concept List in QA system)

  • 김혜정;강보영;박성배;이상조
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.178-180
    • /
    • 2004
  • 질의 응답(Question Answering) 시스템은 질의에서 요구하는 정답 유형(Answer tyype) 및 질의에 사용된 용어를 적용하여 보다 정확한 답을 추출하고자 한다. 그러나 질의에 사용된 용어들이 문서의 정답문장에 그대로 사용되지 않고 같은 의미의 다른 어휘로 출현하기도 하며, 혹은 다른 문법적 정보를 가진 카테고리로 등장하여 정답 추출에 어려움이 따른다. 따라서, 본 논문은 질의별 카테고리 개념 리스트를 구축하여 효과적인 의미적 질의 확장 방법론을 제안한다. 제안된 방법은 먼저 질문 문장의 패턴 린 질의 정보 유형을 파악하여 질의 카테고리 및 카테고리별 개념 리스트를 구축한다. 그런 후 구축된 질의 개념 카테고리 및 리스트를 활용하여 질의 유형을 학습하고, 새로운 질의가 입력되면 해당 개념 카테고리로 분류한 후, 개념 리스트를 기반으로 개념별 질의 확장을 수행한다. 제안된 시스템의 성능 명가를 위하여, TREC-9의 질의와 TREC 문서 중 1991년도 WSJ(Wall Street Journal) 42,654건을 대상으로 실험한 결과 질의 확장을 수행하지 않는 시스템의 경우 MRR(Mean reciprocal ratio) 측정에서 0.223의 결과를 보인 반면 제안된 시스템의 경우 0.50의 향상된 결과를 보였다.

  • PDF