• Title/Summary/Keyword: Question answering system

Search Result 155, Processing Time 0.022 seconds

A Question Answering System Using the Information of the Category Information of Thesaurus (시소러스범주정보를 이용한 질의응답시스템)

  • 김수민;백대호;김상범;임해창
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.179-183
    • /
    • 2000
  • 정보검색시스템은 사용자의 질의를 입력받아 사용자가 원하는 정보를 검색해주는 시스템을 의미한다. 그러나, 대부분의 정보검색시스템은 단어와 연산자의 조합으로 이루어진 질의를 입력받아 문서를 검색해 주고, 사용자는 그 문서들 중에서 원하는 정보를 다시 찾아내야 한다. 본 논문에서는 영어 자여어질의를 입력 받아 사용자가 원하는 정보에 좀 더 근접한 형태의 답으로서 제한된 길이의 짧은 답을 제시하는 시스템을 구현한다. 시스템은 크게 질의분석단계, 문서검색 및 분석단계, 정보추출단계의 세 단계로 나눌 수 있다. 사용자 질의분석단계에서는 의문사 정보와 오토마타, 시소러스 범주 정보를 이용하여 질의에 대한 정답이 될 수 있는 단어의 속성을 예측하였다. 문서분서단계에서는 정답이 될 수 있는 단어의 후보를 선정하기 위해서 시소러스의 범주정보를 사용하였고, 선정된 정답후보중에서 정답을 추출하기 위해 각 후보단어의 질의단어와의 평균거리가중치, 범주간유사도, 공기질의어비율을 사용하였다. 실험을 통해 평균거리가중치만을 이용하는 것 보다 범주간유사도와 공기질의어비율을 함께 이용하는 것이 성능의 향상을 보였다.

  • PDF

Answer Extraction based on Named Entity in Korean Question Answering System (한국어 질의응답시스템에서 개체인식에 기반하여 대답 추출)

  • 이경순;김재호;최기선
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.184-189
    • /
    • 2000
  • 본 논문에서는 한국어 질의응답시스템에서 개체인식에 기반하여 대답을 추출하는 방법을 제안한다. 질의에 대한 문서검색을 통해 검색된 상위 문서를 대상으로 하여 대답이 들어 있을 가능성이 높은 단락을 추출한다. 질의 유형 분석을 통해 대답 유형을 파악한다. 단락에 나타나는 어휘들에 대해서 대답유형에 속하는지에 대한 개체인식을 통해서 대답을 추출한다. 질의응답 시스템의 평가를 위한 테스트컬렉션을 이용한 성능평가에서는 순위 5위까지의 대답추출에서 역순위 평균값이 개체추출에 대해서는 0.322, 50바이트 대답추출에서는 0.449, 250바이트 대답추출에서는 0.559이다. 상위 5이내에 정답을 포함할 비율은 개체추출에서는 48.90%, 50바이트 대답추출에서는 62.20%, 250바이트 대답추출에서는 68.90%을 성능을 보였다.

  • PDF

Constructing Korean Lexical Concept Network for Encyclopedia Question-Answering System (백과사전 질의응답 시스템을 위한 어휘개념망 구축)

  • Choi, Mi-Ran;Oh, Hyo-Jung;Jang, Myung-Gil
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.99-105
    • /
    • 2004
  • 백과사전 질의응답 시스템은 사용자의 자연어 질문과 검색 대상 문서인 백과사전 내용의 의미를 파악하기 위한 고정밀 자연어 처리 기술이 요구된다. 이러한 고정밀 자연어 처리 기술을 위한 중요한 언어자원을 제공하기 위하여 한국어 명사와 동사로 구성되는 대규모 어휘개념망을 구축하였다. 한국어 어휘개념망은 명사와 동사의 상하위 관계를 주요 계층구조로 하여 다양한 한국어 어휘 기초 자료를 바탕으로 구축되었다. 구축된 규모는 일반명사 약 6만 어휘와 동사 약 2만 어휘를 포함한다. 이 논문에서는 어휘개념망을 구축하기 위한 방법과 과정을 소개하고 지금까지 구축된 어휘개념망의 특성에 대해 기술하며, 백과사전 질의응답 시스템에서 어떻게 활용되는지 시스템 구성요소의 예를 들어서 설명한다. 또한 현재 구축된 어휘개념망의 성능 평가를 위해 일반 코퍼스에 대한 커버리지 측정 결과를 기술한다.

  • PDF

A Extraction of Descriptive Answer for a Question-Answering System (질의응답시스템을 위한 서술형 정답 추출)

  • Ko, Byeong-Il;Kang, Yu-Hwan;Shin, Seung-Eun;Seo, Young-Hoon
    • Annual Conference on Human and Language Technology
    • /
    • 2004.10d
    • /
    • pp.303-307
    • /
    • 2004
  • 본 논문에서는 서술형 정답을 요구하는 질의에 대해 올바른 서술형 정답을 추출하는 서술형질의응답시스템에 대해 기술한다. 질의응답시스템에서 요구되는 다양한 서술형 정답을 추출하기 위해 정답 유형을 10가지로 정의하였다. 말뭉치로부터 각 서술형 정답 유형에 대한 정답 패턴을 정의하고, 패턴별 제약 규칙 및 각 유형별 패턴적용 순위화 등을 사용하여 정확한 서술형 정답이 추출되도록 하였다. 정답 패턴은 서술형 정답의 구문 구조 및 각 패턴 또는 정답 유형별 실마리 어휘 등으로 구성된다. 현재 학습되지 않은 일반 문서에 대해 59.2%의 서술형 정답 추출 정확도를 보이며, 시스템 성능 향상을 위해 연구가 진행중이다.

  • PDF

Semantic Parsing of Questions based on the Frame Semantics for Korean Question Answering System (한국어 질의응답 시스템을 위한 프레임 시멘틱스 기반 질의 의미 분석)

  • Hahm, Younggyun;Nam, Sangha;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.122-127
    • /
    • 2016
  • 본 논문에서서는 질의응답 시스템을 위한 자연언어 질의 이해를 위하여 프레임 시멘틱스 기반 의미 분석 방식을 제안한다. 지식베이스에 의존적인 질의 이해는 지식베이스의 불완전성에 의해 충분한 정보를 분석하지 못한다는 점에 착안하여, 질의의 술부-논항구조 및 그 의미에 대한 분석을 수행하여 자연언어 질의에서 나타난 정보들을 충분히 파악하고자 하였다. 본 시스템은 자연언어 질의를 입력으로 받아 이를 프레임 시멘틱스의 구조에 기반하여 기계가 읽을 수 있는 임의의 RDF 표현방식의 모형 쿼리를 생성한다.

  • PDF

Question Answering System that Combines Deep Learning and Information Retrieval (딥러닝과 정보검색을 결합한 질의응답 시스템)

  • Lee, Hyeon-gu;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.134-138
    • /
    • 2016
  • 정보의 양이 빠르게 증가함으로 인해 필요한 정보만을 효율적으로 얻기 위한 질의응답 시스템의 중요도가 늘어나고 있다. 그 중에서도 질의 문장에서 주어와 관계를 추출하여 정답을 찾는 지식베이스 기반 질의응답 시스템이 활발히 연구되고 있다. 그러나 기존 지식베이스 기반 질의응답 시스템은 하나의 질의 문장만을 사용하므로 정보가 부족한 단점이 있다. 본 논문에서는 이러한 단점을 해결하고자 정보검색을 통해 질의와 유사한 문장을 찾고 Recurrent Neural Encoder-Decoder에 검색된 문장과 질의를 함께 활용하여 주어와 관계를 찾는 모델을 제안한다. bAbI SimpleQuestions v2 데이터를 이용한 실험에서 제안 모델은 질의만 사용하여 주어와 관계를 찾는 모델보다 좋은 성능(정확도 주어:33.2%, 관계:56.4%)을 보였다.

  • PDF

Answer Extraction based on Named Entity in Korean Question Answering System (한국어 질의응답시스템에서 개체인식에 기반한 대답 추출)

  • Lee, Kyung-Soon;Kim, Jae-Ho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.184-189
    • /
    • 2000
  • 본 논문에서는 한국어 질의응답시스템에서 개체인식에 기반하여 대답을 추출하는 방법을 제안한다. 질의에 대해 문서검색을 통해 검색된 상위 문서를 대상으로 하여 대답이 들어 있을 가능성이 높은 단락을 추출한다. 질의 유형 분석을 통해 대답 유형을 파악한다 단락에 나타나는 어휘들에 대해서 대답유형에 속하는지에 대한 개체인식을 통해서 대답을 추출한다. 질의응답 시스템의 평가를 위한 테스트컬렉션을 이용한 성능평가에서는 순위5까지의 대답추출에서 역순위 평균값이 개체추출에 대해서는 0.322, 50바이트 대답추출에서는 0.449, 250바이트 대답추출에서는 0.559이다. 상위 5이내에 정답을 포함할 비율은 개체추출에서는48.90%, 50바이트 대답추출에서는 62.20%, 250바이트 대답추출에서는 68.90%을 성능을 보였다.

  • PDF

Construction of Test Collection for Evaluation of Question Answering System (질의응답시스템의 성능 평가를 위한 테스트컬렉션 구축)

  • Lee, Kyung-Soon;Kim, Jae-Ho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.190-197
    • /
    • 2000
  • 본 연구에서는 사용자의 질의에 대해 대답을 제시하는 질의응답시스템의 평가를 위한 테스트컬렉션을 구축하였다. 질의응답시스템 평가를 위한 테스트컬렉션은 207,067개의 문서, 90개의 질의, 각 질의에 대한 적합성 판정 집합으로 구성되어 있다. 문서집합은 신문기사로 SGML 형식으로 가공되었고, 질의는 다양한 유형의 질의와 변형질의를 포함한다. 적합성 판정 집합은 각 질의에 대해서 문서에 대답을 포함하는지의 여부에 따라 적합/부적합으로 판정하였고, 적합한 문서에 대해서는 대답을 표시하였다. 본 연구를 통해 구축된 질의응답시스템 평가를 위한 테스트컬렉션은 질의응답시스템의 객관적인 신뢰성 평가를 위한 기반을 마련하였다.

  • PDF

Abductive Reasoning based Question Answering System for Yes/No Quiz (가추적 추론에 기반한 가부형(O/X 퀴즈) 질의응답 시스템)

  • Heo, Jeong;Lee, Hyung-Jik;Bae, Yong-Jin;Kim, Hyun-Ki;Ock, Cheol-Young
    • Annual Conference on Human and Language Technology
    • /
    • 2015.10a
    • /
    • pp.46-49
    • /
    • 2015
  • 본 논문에서는 가추적 추론에 기만한 질의응답 기술을 활용하여 O/X 퀴즈 질문에 대한 질의응답을 수행하는 기술에 대해서 소개한다. O/X 퀴즈를 기존의 질의응답 기술에 적용하기 위해서는 O/X 퀴즈 문장을 단답형 질문으로 재생성해야 한다. 질문재생성에서는 단답형 질문으로 변환하기 위해 특정 어휘(또는 개체나 구)를 <지시대명사>나 <지시관형사+명사>로 대체한다. 이때 대체된 어휘는 정답후보로 인식된다. 단답형질문과 정답후보의 쌍으로 구성된 정답가설은 근거검색과 유사도에 기반한 신뢰도 값 계산을 통해, O/X를 결정하게 된다. 실험을 통해, 신뢰도 임계값이 0.45일 때 정확률이 69.17%를 보였다.

  • PDF

Topic based Question-Answering System using Real-Time Search Terms (실시간 검색어를 이용한 주제어 기반의 질의응답시스템)

  • Song, Il-Hyeon;Kang, Sang-Woo;Seo, Jung-Yun
    • Annual Conference on Human and Language Technology
    • /
    • 2011.10a
    • /
    • pp.33-37
    • /
    • 2011
  • 본 논문에서는 실시간 검색어를 이용한 주제어 기반의 질의응답 시스템을 제안한다. 제안 시스템은 주제어로 사용자의 질의 범위를 제한함으로써 질의과정에서 발생할 수 있는 오류의 감소를 기대할 수 있다. 제안 시스템은 주제어 기반의 질의응답을 수행하기 위해 검색대상문서 색인, 질의유형결정, 검색결과의 순위화 과정을 거친다. 제안한 방법으로 기준시스템에 비해 P@5에서 질의유형별 평균 69%의 성능향상을 얻었다.

  • PDF