• Title/Summary/Keyword: Question Answering System

Search Result 155, Processing Time 0.018 seconds

A Fast and Powerful Question-answering System using 2-pass Indexing and Rule-based Query Processing Method (2-패스 색인 기법과 규칙 기반 질의 처리기법을 이용한 고속, 고성능 질의 응답 시스템)

  • 김학수;서정연
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.11
    • /
    • pp.795-802
    • /
    • 2002
  • We propose a fast and powerful Question-answering (QA) system in Korean, which uses a predictive answer indexer based on 2-pass scoring method. The indexing process is as follows. The predictive answer indexer first extracts all answer candidates in a document. Then, using 2-pass scoring method, it gives scores to the adjacent content words that are closely related with each answer candidate. Next, it stores the weighted content words with each candidate into a database. Using this technique, along with a complementary analysis of questions which is based on lexico-syntactic pattern matching method, the proposed QA system saves response time and enhances the precision.

I-QANet: Improved Machine Reading Comprehension using Graph Convolutional Networks (I-QANet: 그래프 컨볼루션 네트워크를 활용한 향상된 기계독해)

  • Kim, Jeong-Hoon;Kim, Jun-Yeong;Park, Jun;Park, Sung-Wook;Jung, Se-Hoon;Sim, Chun-Bo
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.11
    • /
    • pp.1643-1652
    • /
    • 2022
  • Most of the existing machine reading research has used Recurrent Neural Network (RNN) and Convolutional Neural Network (CNN) algorithms as networks. Among them, RNN was slow in training, and Question Answering Network (QANet) was announced to improve training speed. QANet is a model composed of CNN and self-attention. CNN extracts semantic and syntactic information well from the local corpus, but there is a limit to extracting the corresponding information from the global corpus. Graph Convolutional Networks (GCN) extracts semantic and syntactic information relatively well from the global corpus. In this paper, to take advantage of this strength of GCN, we propose I-QANet, which changed the CNN of QANet to GCN. The proposed model performed 1.2 times faster than the baseline in the Stanford Question Answering Dataset (SQuAD) dataset and showed 0.2% higher performance in Exact Match (EM) and 0.7% higher in F1. Furthermore, in the Korean Question Answering Dataset (KorQuAD) dataset consisting only of Korean, the learning time was 1.1 times faster than the baseline, and the EM and F1 performance were also 0.9% and 0.7% higher, respectively.

KAB: Knowledge Augmented BERT2BERT Automated Questions-Answering system for Jurisprudential Legal Opinions

  • Alotaibi, Saud S.;Munshi, Amr A.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.346-356
    • /
    • 2022
  • The jurisprudential legal rules govern the way Muslims react and interact to daily life. This creates a huge stream of questions, that require highly qualified and well-educated individuals, called Muftis. With Muslims representing almost 25% of the planet population, and the scarcity of qualified Muftis, this creates a demand supply problem calling for Automation solutions. This motivates the application of Artificial Intelligence (AI) to solve this problem, which requires a well-designed Question-Answering (QA) system to solve it. In this work, we propose a QA system, based on retrieval augmented generative transformer model for jurisprudential legal question. The main idea in the proposed architecture is the leverage of both state-of-the art transformer models, and the existing knowledge base of legal sources and question-answers. With the sensitivity of the domain in mind, due to its importance in Muslims daily lives, our design balances between exploitation of knowledge bases, and exploration provided by the generative transformer models. We collect a custom data set of 850,000 entries, that includes the question, answer, and category of the question. Our evaluation methodology is based on both quantitative and qualitative methods. We use metrics like BERTScore and METEOR to evaluate the precision and recall of the system. We also provide many qualitative results that show the quality of the generated answers, and how relevant they are to the asked questions.

(A Question Type Classifier based on a Support Vector Machine for a Korean Question-Answering System) (한국어 질의응답시스템을 위한 지지 벡터기계 기반의 질의유형분류기)

  • 김학수;안영훈;서정연
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.5_6
    • /
    • pp.466-475
    • /
    • 2003
  • To build an efficient Question-Answering (QA) system, a question type classifier is needed. It can classify user's queries into predefined categories regardless of the surface form of a question. In this paper, we propose a question type classifier using a Support Vector Machine (SVM). The question type classifier first extracts features like lexical forms, part of speech and semantic markers from a user's question. The system uses $X^2$ statistic to select important features. Selected features are represented as a vector. Finally, a SVM categorizes questions into predefined categories according to the extracted features. In the experiment, the proposed system accomplished 86.4% accuracy The system precisely classifies question type without using any rules like lexico-syntactic patterns. Therefore, the system is robust and easily portable to other domains.

Restricting Answer Candidates Based on Taxonomic Relatedness of Integrated Lexical Knowledge Base in Question Answering

  • Heo, Jeong;Lee, Hyung-Jik;Wang, Ji-Hyun;Bae, Yong-Jin;Kim, Hyun-Ki;Ock, Cheol-Young
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.191-201
    • /
    • 2017
  • This paper proposes an approach using taxonomic relatedness for answer-type recognition and type coercion in a question-answering system. We introduce a question analysis method for a lexical answer type (LAT) and semantic answer type (SAT) and describe the construction of a taxonomy linking them. We also analyze the effectiveness of type coercion based on the taxonomic relatedness of both ATs. Compared with the rule-based approach of IBM's Watson, our LAT detector, which combines rule-based and machine-learning approaches, achieves an 11.04% recall improvement without a sharp decline in precision. Our SAT classifier with a relatedness-based validation method achieves a precision of 73.55%. For type coercion using the taxonomic relatedness between both ATs and answer candidates, we construct an answer-type taxonomy that has a semantic relationship between the two ATs. In this paper, we introduce how to link heterogeneous lexical knowledge bases. We propose three strategies for type coercion based on the relatedness between the two ATs and answer candidates in this taxonomy. Finally, we demonstrate that this combination of individual type coercion creates a synergistic effect.

A 3D Audio-Visual Animated Agent for Expressive Conversational Question Answering

  • Martin, J.C.;Jacquemin, C.;Pointal, L.;Katz, B.
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.53-56
    • /
    • 2008
  • This paper reports on the ACQA(Animated agent for Conversational Question Answering) project conducted at LIMSI. The aim is to design an expressive animated conversational agent(ACA) for conducting research along two main lines: 1/ perceptual experiments(eg perception of expressivity and 3D movements in both audio and visual channels): 2/ design of human-computer interfaces requiring head models at different resolutions and the integration of the talking head in virtual scenes. The target application of this expressive ACA is a real-time question and answer speech based system developed at LIMSI(RITEL). The architecture of the system is based on distributed modules exchanging messages through a network protocol. The main components of the system are: RITEL a question and answer system searching raw text, which is able to produce a text(the answer) and attitudinal information; this attitudinal information is then processed for delivering expressive tags; the text is converted into phoneme, viseme, and prosodic descriptions. Audio speech is generated by the LIMSI selection-concatenation text-to-speech engine. Visual speech is using MPEG4 keypoint-based animation, and is rendered in real-time by Virtual Choreographer (VirChor), a GPU-based 3D engine. Finally, visual and audio speech is played in a 3D audio and visual scene. The project also puts a lot of effort for realistic visual and audio 3D rendering. A new model of phoneme-dependant human radiation patterns is included in the speech synthesis system, so that the ACA can move in the virtual scene with realistic 3D visual and audio rendering.

  • PDF

Inverse Document Frequency-Based Word Embedding of Unseen Words for Question Answering Systems (질의응답 시스템에서 처음 보는 단어의 역문헌빈도 기반 단어 임베딩 기법)

  • Lee, Wooin;Song, Gwangho;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.902-909
    • /
    • 2016
  • Question answering system (QA system) is a system that finds an actual answer to the question posed by a user, whereas a typical search engine would only find the links to the relevant documents. Recent works related to the open domain QA systems are receiving much attention in the fields of natural language processing, artificial intelligence, and data mining. However, the prior works on QA systems simply replace all words that are not in the training data with a single token, even though such unseen words are likely to play crucial roles in differentiating the candidate answers from the actual answers. In this paper, we propose a method to compute vectors of such unseen words by taking into account the context in which the words have occurred. Next, we also propose a model which utilizes inverse document frequencies (IDF) to efficiently process unseen words by expanding the system's vocabulary. Finally, we validate that the proposed method and model improve the performance of a QA system through experiments.

A Study on Korean Generative Question-Answering with Contextual Summarization (문맥 요약을 접목한 한국어 생성형 질의응답 모델 연구)

  • Jeongjae Nam;Wooyoung Kim;Sangduk Baek;Wonjun Lee;Taeyong Kim;Hyunsoo Yoon;Wooju Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.581-585
    • /
    • 2023
  • Question Answering(QA)은 질문과 문맥에 대한 정보를 토대로 적절한 답변을 도출하는 작업이다. 이때 입력으로 주어지는 문맥 텍스트는 대부분 길기 때문에 QA 모델은 이 정보를 처리하기 위해 상당한 컴퓨팅 자원이 필요하다. 이 문제를 해결하기 위해 본 논문에서는 요약 모델을 활용한 요약 기반 QA 모델 프레임워크를 제안한다. 이를 통해 문맥 정보를 효과적으로 요약하면서도 QA 모델의 컴퓨팅 비용을 줄이고 성능을 유지하는 것을 목표로 한다.

  • PDF

A Query Expansion Technique using Query Patterns in QA systems (QA 시스템에서 질의 패턴을 이용한 질의 확장 기법)

  • Kim, Hea-Jung;Bu, Ki-Dong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • When confronted with a query, question answering systems endeavor to extract the most exact answers possible by determining the answer type that fits with the key terms used in the query. However, the efficacy of such systems is limited by the fact that the terms used in a query may be in a syntactic form different to that of the same words in a document. In this paper, we present an efficient semantic query expansion methodology based on query patterns in a question category concept list comprised of terms that are semantically close to terms used in a query. The proposed system first constructs a concept list for each question type and then builds the concept list for each question category using a learning algorithm. The results of the present experiments suggest the promise of the proposed method.

  • PDF

Design of a Korean Question-Answering System for News Item Retrieval (우리말 신문기사 검색을 위한 질문응답시스템 구현에 관한 연구)

  • Chung, Young-Mee
    • Journal of the Korean Society for information Management
    • /
    • v.4 no.1
    • /
    • pp.3-23
    • /
    • 1987
  • This paper describes a question-answering system that can automatically analyze input texts and questions in Korean natural language. The particular texts used for the research were newspaper articles in the specific domain of sports news. The system consists of a set of Cobol programs and an associated set of data files containing lexicon, case grammar, linguistic rules. and data base. This system employs two retrieval functions of fact retrieval and passage retrieval. Therefore input questions can be answered in forms of either sentence or factual data.

  • PDF