• Title/Summary/Keyword: Query Stream

Search Result 153, Processing Time 0.018 seconds

DISSECTION TECHNIQUE FOR EFFICIENT JOIN OPERATION ON SEMI-STRUCTURED DOCUMENT STREAM

  • Seo, Dong-Hyeok;Lee, Dong-Gyu;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.11-13
    • /
    • 2007
  • There has been much interest in stream query processing. Various index techniques and advanced join techniques have been proposed to efficiently process data stream queries. Previous proposals support rapid and advanced response to the data stream queries. However, the amount of data stream is increasing and the data stream query processing needs more speedup than before. In this paper, we proposed novel query processing techniques for large number of incoming documents stream. We proposed Dissection Technique for efficient query processing in the data stream environment. We focused on the dissection technique in join query processing. Our technique shows efficient operation performance comparing with the other proposal in the data stream. Proposed technique is applied to the sensor network system and XML database.

  • PDF

A Data-Driven Query Processing Method for Stream Data (스트림 데이터를 위한 데이터 구동형 질의처리 기법)

  • Min, Mee-Kyung
    • Journal of Digital Contents Society
    • /
    • v.8 no.4
    • /
    • pp.541-546
    • /
    • 2007
  • Traditional query processing method is not efficient for continuous queries with large continuous stream data. This paper proposes a data-driven query processing method for stream data. The structure of query plan and query execution method are presented. With the proposed method, multiple query processing and sharing among queries can be achieved. Also query execution time can be reduced by storing partial results of query execution. This paper showed an example of query processing with XML data and XQuery query.

  • PDF

An Efficient Query Processing in Stream DBMS using Query Preprocessor (질의 전처리기를 사용한 스트림 DBMS의 효율적 질의처리)

  • Yang, Young-Hyoo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.1
    • /
    • pp.65-73
    • /
    • 2008
  • The telematics data management deals with queries on stream data coming from moving cars. So the stream DBMS should process the large amount of data stream in real-time. In this article, previous research projects are analyzed in the aspects of query processing. And a hybrid model is introduced where query preprocessor is used to process all types of queries in one singe system. Decreasing cost and rapidly increasing Performance of devices may guarantee the utmost parallelism of the hybrid system. As a result, various types of stream DBMS queries could be processed in a uniform and efficient way in a single system.

  • PDF

Causality join query processing for data stream by spatio-temporal sliding window (시공간 슬라이딩윈도우기법을 이용한 데이터스트림의 인과관계 결합질의처리방법)

  • Kwon, O-Je;Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.219-236
    • /
    • 2008
  • Data stream collected from sensors contain a large amount of useful information including causality relationships. The causality join query for data stream is to retrieve a set of pairs (cause, effect) from streams of data. A part of causality pairs may however be lost from the query result, due to the delay from sensors to a data stream management system, and the limited size of sliding windows. In this paper, we first investigate spatial, temporal, and spatio-temporal aspects of the causality join query for data stream. Second, we propose several strategies for sliding window management based on these observations. The accuracy of the proposed strategies is studied by intensive experiments, and the result shows that we improve the accuracy of causality join query in data stream from simple FIFO strategy.

  • PDF

An Adaptive Query Processing System for XML Stream Data (XML 스트림 데이타에 대한 적응력 있는 질의 처리 시스템)

  • Kim Young-Hyun;Kang Hyun-Chul
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.327-341
    • /
    • 2006
  • As we are getting to deal with more applications that generate streaming data such as sensor network, monitoring, and SDI (selective dissemination of information), active research is being conducted to support efficient processing of queries over streaming data. The applications on the Web environment like SDI, among others, require query processing over streaming XML data, and its investigation is very important because XML has been established as the standard for data exchange on the Web. One of the major problems with the previous systems that support query processing over streaming XML data is that they cannot deal adaptively with dynamically changing stream because they rely on static query plans. On the other hand, the stream query processing systems based on relational data model have achieved adaptiveness in query processing due to query operator routing. In this paper, we propose a system of adaptive query processing over streaming XML data in which the model of adaptive query processing over streaming relational data is applied. We compare our system with YFiiter, one of the representative systems that provide XML stream query processing capability, to show efficiency of our system.

CONTINUOUS QUERY PROCESSING IN A DATA STREAM ENVIRONMENT

  • Lee, Dong-Gyu;Lee, Bong-Jae;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.3-5
    • /
    • 2007
  • Many continuous queries are important to be process efficiently in a data stream environment. It is applied a query index technique that takes linear performance irrespective of the number and width of intervals for processing many continuous queries. Previous researches are not able to support the dynamic insertion and deletion to arrange intervals for constructing an index previously. It shows that the insertion and search performance is slowed by the number and width of interval inserted. Many intervals have to be inserted and searched linearly in a data stream environment. Therefore, we propose Hashed Multiple Lists in order to process continuous queries linearly. Proposed technique shows fast linear search performance. It can be utilized the systems applying a sensor network, and preprocessing technique of spatiotemporal data mining.

  • PDF

A Multi-dimensional Query Processing Scheme for Stream Data using Range Query Indexing (범위 질의 인덱싱을 이용한 스트림 데이터의 다중 질의처리 기법)

  • Lee, Dong-Un;Rhee, Yun-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.69-77
    • /
    • 2009
  • Stream service environment demands real-time query processing for voluminous data which are ceaselessly delivered from tremendous sources. Typical R-tree based query processing technologies cannot efficiently handle such situations, which require repetitive and inefficient exploration from the tree root on every data event. However, many stream data including sensor readings show high locality, which we exploit to reduce the search space of queries to explore. In this paper, we propose a query processing scheme exploiting the locality of stream data. From the simulation, we conclude that the proposed scheme performs much better than the traditional ones in terms of scalability and exploration efficiency.

Design and Implementation of Advanced Traffic Monitoring System based on Integration of Data Stream Management System and Spatial DBMS

  • Xia, Ying;Gan, Hongmei;Kim, Gyoung-Bae
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.162-169
    • /
    • 2009
  • The real-time traffic data is generated continuous and unbounded stream data type while intelligent transport system (ITS) needs to provide various and high quality services by combining with spatial information. Traditional database techniques in ITS has shortage for processing dynamic real-time stream data and static spatial data simultaneously. In this paper, we design and implement an advanced traffic monitoring system (ATMS) with the integration of existed data stream management system (DSMS) and spatial DBMS using IntraMap. Besides, the developed ATMS can deal with the stream data of DSMS, the trajectory data of relational DBMS, and the spatial data of SDBMS concurrently. The implemented ATMS supports historical and one time query, continuous query and combined query. Application programmer can develop various intelligent services such as moving trajectory tracking, k-nearest neighbor (KNN) query and dynamic intelligent navigation by using components of the ATMS.

  • PDF

QUISIS: A Query Index Method Using Interval Skip List (QUISIS: Interval Skip List를 활용한 질의 색인 기법)

  • Min, Jun-Ki
    • The KIPS Transactions:PartD
    • /
    • v.15D no.3
    • /
    • pp.297-304
    • /
    • 2008
  • Due to the proliferation of the Internet and intranet, new application domains such as stream data processing have emerged. Stream data is real-timely and continuously generated. In stream data environments, a lot of queries are registered, and then, the arrived data item is evaluated by registered queries. Thus, to accelerate the query performance, diverse continuous query index schemes have been proposed for stream data processing systems. In this paper, we focus on the query index technique for stream data. In general, a stream query contains the range condition. Thus, by using range conditions, the queries can be indexed. In this paper, we propose an efficient query index scheme, called QUISIS, using a modified Interval Skip Lists to accelerate search time. QUISIS utilizes a locality where a value which will arrive in near future is similar to the current value. Through the experimental study, we show the efficiency of our proposed method.

Multi-dimensional Query Authentication for On-line Stream Analytics

  • Chen, Xiangrui;Kim, Gyoung-Bae;Bae, Hae-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.2
    • /
    • pp.154-173
    • /
    • 2010
  • Database outsourcing is unavoidable in the near future. In the scenario of data stream outsourcing, the data owner continuously publishes the latest data and associated authentication information through a service provider. Clients may register queries to the service provider and verify the result's correctness, utilizing the additional authentication information. Research on On-line Stream Analytics (OLSA) is motivated by extending the data cube technology for higher multi-level abstraction on the low-level-abstracted data streams. Existing work on OLSA fails to consider the issue of database outsourcing, while previous work on stream authentication does not support OLSA. To close this gap and solve the problem of OLSA query authentication while outsourcing data streams, we propose MDAHRB and MDAHB, two multi-dimensional authentication approaches. They are based on the general data model for OLSA, the stream cube. First, we improve the data structure of the H-tree, which is used to store the stream cube. Then, we design and implement two authentication schemes based on the improved H-trees, the HRB- and HB-trees, in accordance with the main stream query authentication framework for database outsourcing. Along with a cost models analysis, consistent with state-of-the-art cost metrics, an experimental evaluation is performed on a real data set. It exhibits that both MDAHRB and MDAHB are feasible for authenticating OLSA queries, while MDAHRB is more scalable.