• 제목/요약/키워드: Query Performance

검색결과 951건 처리시간 0.024초

Relational Database SQL Test Auto-scoring System

  • Hur, Tai-Sung
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권11호
    • /
    • pp.127-133
    • /
    • 2019
  • 오늘날 데이터 처리에 있어 가장 보편적인 언어가 SQL이다. 이를 위해 SQL 교육이 대학에서 진행되고 있다. 따라서 이번 연구에서는 SQL교육의 학습효과를 극대화하기 위한 SQL의 퀴즈 자동 채점 시스템을 제안한다. 본 시스템은 SQL 퀴즈의 자동 채점을 위해 데이터베이스관리시스템을 활용한 알고리즘을 이용하였으며, 만족할 만한 결과를 도출하였다. 본 시스템을 위해 학사관리, 인사관리 데이터베이스에 대해 학사관리의 문제로 문제 은행을 구축하고, 사용자에게 매번 다른 문제를 제공할 수 있도록 하였다. 채점은 테이블에 변화가 없는 검색과 테이블이 변화하는 수정, 삽입, 삭제로 나누어 처리하였다. 검색의 경우 정답과 응답을 실행한 후 실행 결과를 비교하여 처리하였으며, 수정, 삽입, 삭제는 정답과 오답을 실행한 후 테이블을 검색하여 비교함으로써 정답을 확인하도록 하였다. 수정, 삽입, 삭제는 테이블이 변화하였으므로 트랜젝션(transaction) 제어어인 ROLLBACK 명령어를 이용하여 데이터를 원래대로 복원하였다. 본 시스템을 구현하고, 우리대학 컴퓨터정보과 2학년 88명을 대상으로 772회 시행하였다. 시행결과 1회 10문항으로 구성된 시험에 대한 평균 채점 소요시간은 0.052초로 매우 효과적인 것으로 나타났으며, 채점관의 경우 동시에 여러개의 응답을 동시에 처리할 수 없음을 고려한다면 본 시스템의 성능이 월등함을 확인하였다. 향후 정답율을 기초로 문제 난이도를 고려한 문제 시스템으로 발전시키고자 한다.

AI기반 콜센터 실시간 상담 도우미 시스템 개발 - N은행 콜센터 사례를 중심으로 (Development of AI-based Real Time Agent Advisor System on Call Center - Focused on N Bank Call Center)

  • 류기동;박종필;김영민;이동훈;김우제
    • 한국산학기술학회논문지
    • /
    • 제20권2호
    • /
    • pp.750-762
    • /
    • 2019
  • 기업의 대고객 접점으로써 콜센터의 중요성은 커지고 있다. 하지만, 콜센터는 상담사의 지식 부족과 업무 부적응에 따른 잦은 이직으로 인해 상담사 운영이 어렵고, 이로 인한 고객 서비스 품질 저하의 문제를 안고 있다. 이에 본 연구에서는 상담사에게 업무 지식에 대한 부하를 줄이고 서비스 품질을 향상 시키기 위해 음성 인식 기술과 자연어 처리 및 질의응답을 지원하는 AI 기술과 PBX, CTI 등의 콜센터 정보시스템을 결합하여 실시간으로 상담사에게 고객의 질의 내용에 대한 답변을 제공해주는 "실시간 상담 도우미" 시스템 개발 방안에 대해 N은행 콜센터 사례를 통해 연구하였다. 사례연구 결과, 실시간 통화 분석을 위한 음성인식 시스템의 구성방안과, 질의응답 시스템의 자연어처리 성능 향상을 위한 말뭉치 구축 방안을 확인 할 수 있었으며, 특히 개체명 인식기의 경우 도메인에 맞는 말뭉치 학습 후 정확도가 31% 향상됨을 확인하였다. 또한, 상담 도우미 시스템을 적용한 후 상담 도우미의 답변에 대한 상담사들의 긍정적 피드백 비율이 93.1%로써 충분히 상담사 업무에 도움을 주고 있음을 확인하였다.

이동 객체 경로 탐색을 위한 시공간 클러스터링 기법 (A Spatio-Temporal Clustering Technique for the Moving Object Path Search)

  • 이기영;강홍구;윤재관;한기준
    • 한국공간정보시스템학회 논문지
    • /
    • 제7권3호
    • /
    • pp.67-81
    • /
    • 2005
  • 최근 들어 지리 정보 시스템이 발전함에 따라 경로 검색, 주변 정보 검색, 응급 서비스 등을 제공하는 위치 기반 서비스, 텔레매틱스 등의 새로운 응용 서비스 개발에 대한 관심과 연구가 증대되고 있다. 위치 기반 서비스 및 텔레매틱스에서 사용되는 시공간 데이타베이스에서의 사용자의 검색은 시간 축을 현재의 시간으로 고정하고 공간 및 비공간 속성을 검색하기 때문에 시간 축에 대한 검색 범위가 넓을 경우에는 이를 효율적으로 처리하기 어렵다. 이를 해결하기 위하여 이동 객체의 위치 데이타를 요약하는 기법인 스냅샷이 소개되었다. 그러나, 이러한 스냅샷 기법은 저장해야 되는 총간 영역이 넓을 경우 저장 공간이 많이 필요하며 검색에 자주 사용되지 않는 불필요한 영역까지 스냅샷을 생성하므로 저장 공간 및 메모리를 많이 사용하게 된다. 이에 본 논문에서는 기존의 스냅샷 기법의 단점을 극복하기 위하여 이전에 공간 클러스터링을 위해 사용되던 2차원의 공간 해시 알고리즘을 시공간으로 확장한 해시-기반 시공간 클러스터링 알고리즘(H-STCA)과 과거 위치 데이타로부터 이동 객체 경로 탐색을 위한 지식을 추출하기 위해 H-STCA 알고리즘에 근거한 지식 추출 알고리즘을 제안한다. 그리고, 대용량의 이동 객체 데이터에 대한 검색 시간, 저장 구조 생성 시간, 최적 경로 탐색 시간 등에서 H-STCA를 사용한 스냅샷 클러스터링 방법, 기존의 시공간 인덱스 방법, 스냅샷 방법과의 성능평가에 대하여 설명한다. 성능평가 결과로 H-STCA를 사용한 스냅샷 클러스터링 방법은 기존의 시공간 인덱스 방법이나 스냅샷 방법 보다 이동 객체의 개수가 증가하면 할수록 성능 향상이 더욱 큰 것으로 나타났다.

  • PDF

사용자 만족도 향상을 위한 지능형 서비스 선정 방안에 관한 연구 : 클라우드 컴퓨팅 서비스에의 적용 (A Study on the Intelligent Service Selection Reasoning for Enhanced User Satisfaction : Appliance to Cloud Computing Service)

  • 신동천
    • 지능정보연구
    • /
    • 제18권3호
    • /
    • pp.35-51
    • /
    • 2012
  • 클라우드 컴퓨팅은 컴퓨팅 자원에 대해 확장 가능한 요구중심의 서비스를 인터넷상에서 제공하는 인터넷 기반의 컴퓨팅이라 할 수 있다. 이러한 환경에서 서비스 사용자가 만족하는 서비스를 선정하여 제공하는 문제는 인터넷과 모바일 기술의 발전에 따라 향후에 다양하고 수많은 클라우드 서비스가 제공되는 경우 매우 중요한 이슈중의 하나가 된다. 과거 연구의 대부분은 요구사항과 연관된 개념의 유사성을 기반으로 하거나 사용자 요구사항의 다양성이 결여되어 있어 사용자의 만족도 향상에 한계를 보이고 있다. 본 논문에서 제안하는 방안은 서비스 만족도 향상을 위해 속성의 개념 유사성 대신에 서비스 속성의 기능적 포함 관계와 규격 등을 기반으로 구성되는 서비스 속성 그래프(Service Attribute Graph : SAG)를 도입하여 사용한다. 뿐만 아니라, 다양한 사용자 선호도를 반영하고 문자, 숫자, 부울린 등 여러 가지 속성 값 유형들을 고려함으로서 서비스 속성의 다양성을 지원한다. 본 논문의 가장 큰 의미는 다른 연구들과 달리 여러 가지 사용자 선호도를 통합적으로 고려하면서 그래프 기반의 선정 방안을 처음으로 제시하고 있다는 점이다.

FCA 기반 계층적 구조를 이용한 문서 통합 기법 (Methods for Integration of Documents using Hierarchical Structure based on the Formal Concept Analysis)

  • 김태환;전호철;최종민
    • 지능정보연구
    • /
    • 제17권3호
    • /
    • pp.63-77
    • /
    • 2011
  • 월드와이드웹(World Wide Web)은 인터넷에 연결된 컴퓨터를 통해 사람들이 정보를 공유할 수 있는 매우 큰 분산된 정보 공간이다. 웹은 1991년에 시작되어 개인 홈페이지, 온라인 도서관, 가상 박물관 등 다양한 정보 자원들을 웹으로 표현하면서 성장하였다. 이러한 웹은 현재 5천억 페이지 이상 존재할 것이라고 추정한다. 대용량 정보에서 정보를 효과적이며 효율적으로 검색하는 기술을 적용할 수 있다. 현재 존재하는 몇몇 검색 도구들은 초 단위로 gigabyte 크기의 웹을 검사하여 사용자에게 검색 정보를 제공한다. 그러나 검색의 효율성은 검색 시간과는 다른 문제이다. 현재 검색 도구들은 사용자의 질의에 적합한 정보가 적음에도 불구하고 많은 문서들을 사용자에게 검색해준다. 그러므로 대부분의 적합한 문서들은 검색 상위에 존재하지 않는다. 또한 현재 검색 도구들은 사용자가 찾은 문서와 관련된 문서를 찾을 수 없다. 현재 많은 검색 시스템들의 가장 중요한 문제는 검색의 질을 증가 시키는 것이다. 그것은 검색된 결과로 관련 있는 문서를 증가시키고, 관련 없는 문서를 감소시켜 사용자에게 제공하는 것이다. 이러한 문제를 해결하기 위해 CiteSeer는 월드와이드웹에 존재하는 논문에 대해 한정하여 ACI(Autonomous Citation Indexing)기법을 제안하였다. "Citaion Index"는 연구자가 자신의 논문에 다른 논문을 인용한 정보를 기술하는데 이렇게 기술된 논문과 자신의 논문을 연결하여 색인한다. "Citation Index"는 논문 검색이나 논문 분석 등에 매우 유용하다. 그러나 "Citation Index"는 논문의 저자가 다른 논문을 인용한 논문에 대해서만 자신의 논문을 연결하여 색인했기 때문에 논문의 저자가 다른 논문을 인용하지 않은 논문에 대해서는 관련 있는 논문이라 할지 라도 저자의 논문과 연결하여 색인할 수 없다. 또한 인용되지 않은 다른 논문과 연결하여 색인할 수 없기 때문에 확장성이 용이하지 못하다. 이러한 문제를 해결하기 위해 본 논문에서는 검색된 문서에서 단락별 명사와 동사 및 목적어를 추출하여 해당 동사가 명사 및 목적어를 취할 수 있는 가능한 값을 고려하여 하나의 문서를 formal context 형태로 변환한다. 이 표를 이용하여 문서의 계층적 그래프를 구성하고, 문서의 그래프를 이용하여 문서 간 그래프를 통합한다. 이렇게 만들어진 문서의 그래프들은 그래프의 구조를 보고 각각의 문서의 영역을 구하고 그 영역에 포함관계를 계산하여 문서와 문서간의 관계를 표시할 수 있다. 또한 검색된 문서를 트리 형식으로 보여주어 사용자가 원하는 정보를 보다 쉽게 검색할 수 있는 문서의 구조적 통합 방법에 대해 제안한다. 제안한 방법은 루씬 검색엔진이 가지고 있는 순위 계산 공식을 이용하여 문서가 가지는 중요한 단어를 문서의 참조 관계에 적용하여 비교하였다. 제안한 방법이 루씬 검색엔진보다15% 정도 높은 성능을 나타내었다.

키워드 자동 생성에 대한 새로운 접근법: 역 벡터공간모델을 이용한 키워드 할당 방법 (A New Approach to Automatic Keyword Generation Using Inverse Vector Space Model)

  • 조원진;노상규;윤지영;박진수
    • Asia pacific journal of information systems
    • /
    • 제21권1호
    • /
    • pp.103-122
    • /
    • 2011
  • Recently, numerous documents have been made available electronically. Internet search engines and digital libraries commonly return query results containing hundreds or even thousands of documents. In this situation, it is virtually impossible for users to examine complete documents to determine whether they might be useful for them. For this reason, some on-line documents are accompanied by a list of keywords specified by the authors in an effort to guide the users by facilitating the filtering process. In this way, a set of keywords is often considered a condensed version of the whole document and therefore plays an important role for document retrieval, Web page retrieval, document clustering, summarization, text mining, and so on. Since many academic journals ask the authors to provide a list of five or six keywords on the first page of an article, keywords are most familiar in the context of journal articles. However, many other types of documents could not benefit from the use of keywords, including Web pages, email messages, news reports, magazine articles, and business papers. Although the potential benefit is large, the implementation itself is the obstacle; manually assigning keywords to all documents is a daunting task, or even impractical in that it is extremely tedious and time-consuming requiring a certain level of domain knowledge. Therefore, it is highly desirable to automate the keyword generation process. There are mainly two approaches to achieving this aim: keyword assignment approach and keyword extraction approach. Both approaches use machine learning methods and require, for training purposes, a set of documents with keywords already attached. In the former approach, there is a given set of vocabulary, and the aim is to match them to the texts. In other words, the keywords assignment approach seeks to select the words from a controlled vocabulary that best describes a document. Although this approach is domain dependent and is not easy to transfer and expand, it can generate implicit keywords that do not appear in a document. On the other hand, in the latter approach, the aim is to extract keywords with respect to their relevance in the text without prior vocabulary. In this approach, automatic keyword generation is treated as a classification task, and keywords are commonly extracted based on supervised learning techniques. Thus, keyword extraction algorithms classify candidate keywords in a document into positive or negative examples. Several systems such as Extractor and Kea were developed using keyword extraction approach. Most indicative words in a document are selected as keywords for that document and as a result, keywords extraction is limited to terms that appear in the document. Therefore, keywords extraction cannot generate implicit keywords that are not included in a document. According to the experiment results of Turney, about 64% to 90% of keywords assigned by the authors can be found in the full text of an article. Inversely, it also means that 10% to 36% of the keywords assigned by the authors do not appear in the article, which cannot be generated through keyword extraction algorithms. Our preliminary experiment result also shows that 37% of keywords assigned by the authors are not included in the full text. This is the reason why we have decided to adopt the keyword assignment approach. In this paper, we propose a new approach for automatic keyword assignment namely IVSM(Inverse Vector Space Model). The model is based on a vector space model. which is a conventional information retrieval model that represents documents and queries by vectors in a multidimensional space. IVSM generates an appropriate keyword set for a specific document by measuring the distance between the document and the keyword sets. The keyword assignment process of IVSM is as follows: (1) calculating the vector length of each keyword set based on each keyword weight; (2) preprocessing and parsing a target document that does not have keywords; (3) calculating the vector length of the target document based on the term frequency; (4) measuring the cosine similarity between each keyword set and the target document; and (5) generating keywords that have high similarity scores. Two keyword generation systems were implemented applying IVSM: IVSM system for Web-based community service and stand-alone IVSM system. Firstly, the IVSM system is implemented in a community service for sharing knowledge and opinions on current trends such as fashion, movies, social problems, and health information. The stand-alone IVSM system is dedicated to generating keywords for academic papers, and, indeed, it has been tested through a number of academic papers including those published by the Korean Association of Shipping and Logistics, the Korea Research Academy of Distribution Information, the Korea Logistics Society, the Korea Logistics Research Association, and the Korea Port Economic Association. We measured the performance of IVSM by the number of matches between the IVSM-generated keywords and the author-assigned keywords. According to our experiment, the precisions of IVSM applied to Web-based community service and academic journals were 0.75 and 0.71, respectively. The performance of both systems is much better than that of baseline systems that generate keywords based on simple probability. Also, IVSM shows comparable performance to Extractor that is a representative system of keyword extraction approach developed by Turney. As electronic documents increase, we expect that IVSM proposed in this paper can be applied to many electronic documents in Web-based community and digital library.

중장년층 일자리 요구사항 분석 및 인력 고용 매칭 시스템 개발 (Job Preference Analysis and Job Matching System Development for the Middle Aged Class)

  • 김성찬;장진철;김성중;진효진;이문용
    • 지능정보연구
    • /
    • 제22권4호
    • /
    • pp.247-264
    • /
    • 2016
  • 저출산 및 인구 고령화가 가속화되면서, 중장년 퇴직자 등 노동 소외 계층의 취업난 해결은 우리 사회의 핵심 과제로 등장하고 있다. 온라인에는 수많은 일자리 요구 정보가 산재해 있으나, 이를 중장년 구직자에게 제대로 매칭시키지는 못하고 있다. 워크넷 취업 로그에 따르면 구직자가 선호하는 직종에 취업하는 경우는 약 24%에 불과하다. 그러므로, 이러한 문제를 극복하기 위해서는 구직자에게 일자리 정보를 매칭시킬 때 선호하는 직종과 유사한 직종들을 추천하는 소프트 매칭 기법이 필수적이다. 본 연구는 중장년층에 특화된 소프트 직업 매칭 알고리즘과 서비스를 고안하고 개발하여 제공하는 것을 목표로 한다. 이를 위하여 본 연구에서는 1) 대용량의 구직 활동 기록인 워크넷 로그로부터 중장년층의 일자리 특성 및 요구 추세를 분석하였다. 2) 중장년층의 일자리 추천을 위해 직종 유사도 기준으로 일자리 분류표(KOCM)를 재정렬하였다. 이 결과를 이용하여, 3) 중장년에 특화된 인력 고용 소프트 매칭 직업 추천 알고리즘(MOMA)을 개발하여 구인 구직 웹사이트에 적용하였다. 자체 저작한 중장년층 특화 일자리 분류표(KOCM)를 이용한 소프트 일자리 매칭 시스템의 정확도를 측정하였을 때, 실제 고용 결과 기준, 하드 매칭 대비 약 20여 배의 성능 향상을 보였다. 본 연구내용을 적용하여 개발한 중장년층 특화 구직 사이트는 중장년층의 구직 과정에서 입력 정보 부담을 최소화하고 소프트 매칭을 통해 사용자의 요구직종에 적합한 일자리를 정확하고 폭넓게 추천함으로 중장년층의 삶의 질 향상에 기여할 수 있을 것으로 기대된다.

지식 간 상호참조적 네비게이션이 가능한 온톨로지 기반 프로세스 중심 지식지도 (Ontology-Based Process-Oriented Knowledge Map Enabling Referential Navigation between Knowledge)

  • 유기동
    • 지능정보연구
    • /
    • 제18권2호
    • /
    • pp.61-83
    • /
    • 2012
  • 지식지도는 관련된 지식의 현황을 네트워크 형식으로 보여주는 일종의 도식으로, 지식 간의 상호참조적 네비게이션 관계를 기초로 하는 지식 분류 및 저장 체계 역할을 한다. 이러한 이유로 인하여 지식 및 이들 지식이 또 다른 지식과 갖는 관계를 네트워크 형식으로 형식적이고 객관적으로 묘사하기 위한 온톨로지 기반 지식지도의 필요성이 대두되어왔다. 본 논문은 지식 간의 상호참조적 네비게이션이 가능한 온톨로지 기반 지식지도를 구현하기 위한 방법론을 제시한다. 제시된 방법론에 의해 구현되는 온톨로지 기반 지식지도는 지식 간의 상호참조적 네비게이션을 가능하게 할 뿐만 아니라 이러한 지식 간 네트워크 관계에 의해 추가적인 지식 간의 관계를 추론할 수 있다. 제시된 개념의 타당성을 검증하기 위하여 두 가지의 실제 비즈니스 프로세스를 기반으로 지식지도를 구현하였고, 구현된 지식지도에 나타나는 지식 간 네트워크 구성의 유효성을 검토하였다.

Open Source를 이용한 MicroPACS의 구성과 활용 (Application of MicroPACS Using the Open Source)

  • 유연욱;김용근;김영석;원우재;김태성;김석기
    • 핵의학기술
    • /
    • 제13권1호
    • /
    • pp.51-56
    • /
    • 2009
  • 목적 : Small-scalled PACS, Pc-based PACS로 표현되는 MicroPACS 시스템 구축에 대한 관심도가 급격하게 증가하고 있는 추세이다. MicroPACS 시스템은 PACS를 작은 규모에서 사용할 수 있도록 구성해놓은 것이고, 이 시스템을 구성하기 위해서는 DICOM viewer나 연결프로그램 등이 필요하다. 이것은 공개소스프로그램(Open Source Program)을 통해서 어느 누구나 쉽게 무료로 다운로드를 받을 수 있게 되어있다. 본 논문은 Open source program으로 MicroPACS를 직접 구성해보았고, 저장매체로서의 활용가치를 측정하기위하여 성능, 안정성 측면에서 기존의 광 저장매체(CD, DVDRAM)와 비교 분석하였다. 실험재료 및 방법 : 1. 소형 PACS를 구축하기 위해서 먼저 다음 기준에 맞는 DICOM Server Software를 검색한다. (1) 윈도우체제에서 사용가능할 것. (2) Free ware일 것. (3) PET/CT scanner와 호환되어야 할 것. (4) 사용하기 쉬워야 할 것. (5) 저장의 한계가 없어야 할 것. 2. (1) MicroPACS의 성능을 평가하기 위해 환자 1명의 Data ($^{18}F$-FDG Torso PET/CT)를 현재 Back-up장치로 쓰이는 광 저장매체(CD, DVD-RAM)와 MicroPACS에 저장하는데 소요되는 시간(Back up time)과 workstation으로 복구되기까지의 시간(Retrieval time)을 비교해 보았다. (2) PET/CT 검사를 시행했던 환자 1명의 병록번호와 검사 시행날짜를 핵의학과 직원 7명을 대상으로 알려주고 Data를 찾는데 소요되는 시간을 MicroPACS와 광 저장매체(CD, DVD-RAM)에서 각각 측정하여 비교하였다. 3. 기존의 백업장치로 쓰였던 CD들 중에서 2004년부터 2006년까지 500장을 무작위로 뽑아서 loading을 하였고 그중에서 얼마만큼의 에러가 발생하였는지를 측정하여 MicroPACS의 안정성을 비교평가하였다. 결과 : 1. Server와 DICOM viewer 기능을 갖춘 11개의 open source software 중에서 Conquest DICOM Server를 선택하였다. 2. (1) Backup과 Retrieval 시간 비교(단위 : 분)는 다음과 같다; DVD-RAM(5.13,2.26)/Conquest DICOM Server (1.49,1.19) by GE DSTE (p<0.001), CD (6.12,3.61)/Conquest (0.82,2.23) by GE DLS (p<0.001), CD (5.88,3.25)/Conquest (1.05,2.06) by SIEMENS. (2) CD ($156{\pm}46$초), DVD-RAM ($115{\pm}21$초) and Conquest DICOM Server ($13{\pm}6$초). 3. 1년간 MicroPACS에서의 데이터손실은 없었으며(0%), 500장의 CD 중에서 14개(2.8%)가 Loading하는데 실패하였다. 결론 : 현재 많은 병원에서 도입되고 있는 Full PACS를 open source software를 통하여 소규모의 PACS로 재현해 보았고, 그 결과 가능하다는 결론이 나왔다. 데이터 저장의 유용성을 평가한 결과에서 MicroPACS를 이용하는 것이 기존의 광저장매체를 사용하는 것보다 효율적이고 작업속도가 향상 된다는 것을 확인할 수 있다.

  • PDF

지능형 검색엔진을 위한 색상 질의 처리 방안 (Color-related Query Processing for Intelligent E-Commerce Search)

  • 홍정아;구교정;차지원;서아정;여운영;김종우
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.109-125
    • /
    • 2019
  • 지능형 전자상거래 검색 엔진에 대한 관심이 커지면서, 검색 상품의 특징을 지능적으로 추출하고 활용하기 위한 연구들이 수행되고 있다. 특히 전자상거래 지능형 검색 엔진에서 상품을 검색 할 때, 제품의 색상은 상품을 묘사하는 중요한 특징 중에 하나이다. 따라서 사용자의 질의에 정확한 응답을 위해서는 사용자가 검색하려는 색상과 그 색상의 동의어 및 유의어에 대한 처리가 필요하다. 기존의 연구들은 색상 특징에 대한 동의어 처리를 주로 사전 방식으로 다뤄왔다. 하지만 이러한 사전방식으로는 사전에 등록되지 않은 색상 용어가 질의에 포함된 경우 처리하지 못하는 한계점을 가지고 있다. 본 연구에서는 기존에 사용하던 방식의 한계점을 극복하기 위하여, 실시간으로 인터넷 검색 엔진을 통해 해당 색상의 RGB 값을 추출한 후 추출된 색상정보를 기반으로 유사한 색상명들을 출력하는 모델을 제안한다. 본 모델은 우선적으로 기본적인 색상 검색을 위해 671개의 색상명과 각 RGB값이 저장된 색상 사전을 구축하였다. 본 연구에서 제시한 모델은 특정 색상을 검색하는 것으로 시작하며, 검색된 색상이 색상 사전 내 존재하는 지 유무를 확인한다. 사전 내에 검색한 색상이 존재한다면, 해당 색상의 RGB 값이 기준 값으로 사용된다. 만일 색상사전 내에 존재하지 않는다면, Google 이미지 검색 결과를 크롤링하여 각 이미지의 특정 영역 내 RGB값들을 군집화하여 구한 평균 RGB값을 검색한 색상의 기준 값으로 한다. 기준 RGB값을 앞서 구축한 색상 사전 내의 모든 색상의 RGB 값들과 비교하여 각 R, G, B 값에 있어서 ${\pm}50$ 내의 색상 목록을 정렬하고, RGB값 간의 유클리디안 거리 유사도를 활용하여 최종적으로 유사한 색 상명들을 출력한다. 제안 방안의 유용성을 평가하기 위해 실험을 진행하였다. 피설문자들이 생각하는 300 개의 색상 이름과 해당 색상 값을 얻어, 본 연구에서 제안한 방안을 포함한 총 네가지 방법을 통해 얻은 RGB 값들과 피설문자가 지정한 RGB값에 대한 비교를 진행했다. 인간의 눈을 반영하는 측정 기준인 CIELAB의 유클리드안거리는 평균 13.85로 색상사전만을 활용한 방안의 30.88, 한글 동의어사전 사이트인 워드넷을 추가로 활용한 방안의 30.38에 비해 비교적 낮은 색상 간의 거리 값을 보였다. 연구에서 제시하는 방안에서 군집화 과정을 제외한 방안의 색 차는 13.88로 군집화 과정이 색 차를 줄여준다는 것을 확인할 수 있었다. 본 연구에서는 기존 동의어 처리 방식인 사전 방식이 지닌 한계에서 벗어나기 위해, 사전 방식에 새로운 색상명에 대한 실시간 동의어 처리 방식을 결합한 RGB값 기반의 새로운 색상 동의어 처리 방안을 제안한다. 본 연구의 결과를 활용하여 전자상거래 검색 시스템의 지능화에 크게 기여할 수 있을 것이다.