• Title/Summary/Keyword: Quenching rate

Search Result 244, Processing Time 0.028 seconds

Effects of RF Pulsing on the Ionization Enhancement in Ionized Magnetron Sputtering (RF pulsing이 Ionized Magnetron Sputtering의 이온화율 향상에 미치는 효과)

    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.3
    • /
    • pp.255-260
    • /
    • 1998
  • The ionized magnetron sputtering is very useful in filling of small metal contact or via in ULSI processing with very high ionization upto 80% based on incoming flux ratio. But fairly high sputtering gas pressure is required to get high ionization, which instead gives low deposition rate and diverse incoming neutral's angular distribution. The electron quenching by heavily sputtered metals and gas rarefaction were considered the main causes of decreased ionization in this process. RF pulsing of sputtering power was proposed to solve those two problems. The results showed that 10㎳/10 ㎳ and 100㎳/100 ㎳ of on/off pulsings were optimal pulse conditions from OES measurements and also XRD of deposited Ag film showed distinct change of (111) to (200) preferred orientation. These results were analysed in a view point of neutral gas heating and cooling by high power sputtering.

  • PDF

Microstructure and Corrosion Behavior of Zr Alloys with Manufacturing Process (핵연료피복관용 Zr 합금의 제조공정에 따른 미세조직 및 부식거동)

  • Kim, H.G.;Choi, B.K.;Kim, K.T.;Kim, S.D.;Park, C.H.;Jeong, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.5
    • /
    • pp.288-296
    • /
    • 2005
  • The corrosion behaviors of Zr-based alloys were very sensitive to their microstructures which were determined by manufacturing process. The specimens of Zr-based alloy named as HANA-4 for nuclear fuel cladding were investigated in order to get the optimized manufacturing process such as the intermediate annealing temperature and cold working steps after the ${\beta}$ quenching. From the microstructural analysis, cold worked microstructure of the samples was changed to the recrystallized microstructure by performed process. The corrosion behaviors of HANA-4 alloy were affected by the different manufacturing process. The ${\beta}$-Zr phase was formed in the matrix and the Nb concentration in the ${\beta}$-Zr phase was increased as progressing the manufacturing process. So, it was found that the corrosion rate of HANA-4 alloy was affected by the Nb concentration in the matrix.

Characterization of Hardenability and Mechanical Properties of B-Bearing Microalloyed Steels for Cold Forging (붕소함유 냉간단조용 비조질강의 경화능 및 기계적 특성평가)

  • Park H. G.;Nam N. G.;Choi H. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.395-399
    • /
    • 2004
  • Four microalloyed steels containing B were investigated in terms of hardenability, mechanical properties and microstructure depending upon the cooling rates in order to develop the steel grade for the cold forged fasners. The alloy with the largest DI value among 4 alloys, which contains $0.12\%\;C,\;1.54\%\;Mn,\;0.65\%\;Cr,\;0.11\%V,\;0.040\%Ti\;and\;0.0033\%B$, showed the larest shift to the right hand side in the TTT diagram, implying the wide allowable cooling rate range subsequent to hot rolling in long bar processing, Mechanical tests indicated that yield strength are dependent upon the DI value in water quenched specimens but other properties showed almost the same values. In the same grade of steel, the increase in cooling rates causes the decrease in elongation but the increase in strength, reduction of area and Charpy impact values. Microstructural examination in steel grade with the larest DI values revealed martensitic structure In the water quenched state, a mixture of martensite and bainite in the oil quenched, and ferrite + pearlite in the air cooled and the forced air cooled but the latter showed finer microstructure.

  • PDF

The study of phase inversion of polymer solutions using small angle light scattering (SALS): The effect of addition of alcohol (C1-C4) on phase separation behavior and hydraulic permeation (SALS를 이용한 고분자용액의 상전환 기구에 관한 연구 : C1-C4 알콜의 첨가에 따른 상분리 거동에 미치는 효과와 투과 특성)

  • Kang, Jong-Seok;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2002.05a
    • /
    • pp.81-85
    • /
    • 2002
  • Small angle light scattering and field emission scanning electron microscope have been used to quantify the kinetics of liquid-liquid separation behavior during water vapor(RH52%[$\pm$3%] at 27$^{\circ}C$) quenching (non-solvent induced phase separation, NIPS) of polysulfone/NMP/Alcohol and CPVC/THF/Alcohol, respectively. Time dependence of the position of the light scattering maximum was observed at polysufone dope solutions, confirming spinodal secomposition (SD). while CPVC dope solutions showed a decreased scattered light intensity with a increased q-valuel, indicating nucleation & growth (NG). For the each system, domain growth rate in the intermediate and late stage of phase separation decreased with increasing the number of carbon of alcohol used as additive (non-solvent). Also, in the early stage for SD, the scattering intensity with time was in accordance with Cahns linear theory of spinodal decomposition,[1-3] regardless of types of non-solvent additive.

  • PDF

Structure and Antibacterial Property of ZnO-B2O3-P2O5 Glasses

  • Bae, Jun-Hyeon;Cha, Jae-Min;Kim, Dae-Sung;Kim, Young-Seok;Ryu, Bong-Ki
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.135-139
    • /
    • 2018
  • The glass structure and antibacterial properties of $(65-x)ZnO-xB_2O_3-35P_2O_5$ glasses were investigated. Zinc borophosphate glasses were prepared using a conventional melt-quenching technique at $1000^{\circ}C$. Glass transition temperature and CTE were studied and the structure of zinc borophosphate glasses was evaluated by FTIR. The $Zn^{2+}$ state increase with increasing ZnO content was investigated by XPS and a single sharp Zn $2P_{3/2}$ peak was confirmed, showing that Zn $2P_{3/2}$ exists as $Zn^{2+}$. In order to to evaluate the antimicrobial activity, Escherichia coli (E. coli) was used following the Japanese Industrial Standard JIS Z 2801; the E. coli death rate was found to increase with increasing $Zn^{2+}$ content of glasses.

Effects of $CO_2$ addition to Oxygen-Enriched Combustion (산소부화연소에서 $CO_2$ 첨가에 대한 영향)

  • Kim, Ho-Keun;Kim, Han-Seok;Ahn, Kook-Young;Kim, Yong-Mo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1389-1394
    • /
    • 2003
  • $CO_2$ is a well-known green house gas, which is the major source of global warming. Many researchers have studied to reduce $CO_2$ emission in combustion processes. Among the method for reducing $CO_2$ emission, oxygen-enriched combustion has been proposed. But the adiabatic flame temperature is too high. So existing facilities must be changed, or the adiabatic flame temperature in the combustion zone should be reduced. The combustion characteristics, composition in the flame zone, temperature profile and emission gases were studied experimentally for the various oxygen-enriched mtios(OER) by addition of $CO_2$ under coustant $O_2$ flowrate. Results showed that the reaction zone was quenched, broadened, as addition of $CO_2$ was increased. Temperature has a large effect on the NOx emission. The emission of NOx in flue gas decreased due to the decreased temperature of reaction zone. It was also shown that the reaction was delayed by the cooling effect. As the addition of $CO_2$ was increased, the composition of CO in the flame zone increased due to the increase of reaction rate by increasing mixing effect of oxidant/fuel at OER=0, but the composition of CO decreased by quenching effect at OER=50 and 100%.

  • PDF

A Study on the Coolingability of Sodium Aqueous Solutions by Quenching (퀜칭시 나트륨계 수용액의 냉각성능에 관한 연구)

  • Kim, Ok Sam;Choi, Eun Soon;Min, Soo Hong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.5 no.4
    • /
    • pp.224-232
    • /
    • 1992
  • Coolingability of coolants is important factor in cooling processor heat treatment of steel. Using standard apparatus and method defined in the Korean Industrial Standard three different shapes of probe were designed, ie, cylinderical, spherical and square on shape with same volume of standard probe. Distilled water and sodium aquious solutions with different concentration of NaOH, NaCl and $Na_2CO_3$ were examined. Estimation of coolingability of each quenchants for the probes of cylinderical, spherical or square shape, the cooling rate is greater square, cylinder and sphere in order. Coolingability of sodium aquious solution of NaCl, $Na_2CO_3$ and NaOH is found generally greater then that of distilled water. Effectiveness of ingredients is in the order of $Na_2CO_3$, NaOH and NaCl. In both solutions coolingability increases in 20%, 5%, and 10%in order. Analytical results obtained from Finite Element Method were compared with experimental ones and found as practically satisfactional.

  • PDF

Catalyst Preparations, Coating Methods, and Supports for Micro Combustor (초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체)

  • Jin, Jung-Kun;Kim, Chung-Ki;Lee, Sung-Ho;Kwon, Se-Jin
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.2
    • /
    • pp.7-14
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and it can be applied to micro structured chamber without consideration of quenching since it is flameless combustion. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95 % for $H_2/Air$ premixed gas.

  • PDF

Study on the Heat Treatment Characteristics and Mechanical Properties of Hot Work Tool Steel by Using Combined Heat Treating (복합열처리된 열간 가공용 금형공구강의 기계적 성질 및 열처리특성에 관한 연구)

  • Baek, S.D.;Roh, Y.S.;Choi, M.S.;Choi, J.W.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.2 no.4
    • /
    • pp.27-39
    • /
    • 1989
  • The effect of gas mixing ratios during gas nitrocarburizing treatment on the formation of compound layer and the mechanical properties has been studied for hot work tool steel by using a combined heat treating technique. The thickness of compound and diffusion layers has been shown to grow as a parabolic relation with increasing the amount of ammonia at a given flow quantity of $CO_2$ gas. The compound layer consists mainly of ${\varepsilon}-Fe_3$(C, N) with small amounts of ${\gamma}^{\prime}-Fe_4N$ and ${\alpha}$-Fe. The combined heat treated hot work tool steel has shown that the thickness of compound layer increases with increasing nitrocarburizing time, but the rate of growth slows down as gas nitrocarburizing time goes more than two hours. Tensile properties have given a remarkable improvement. In particular, the wear resistance of combined heat treated hot work tool steel has exhibited an improvement of about 165% greater than that obtained from conventional quenching and multi-tempering treatments.

  • PDF

A Numerical Study of the Melt Puddle Formation in the Flow Casting, (Planar Flow Casting의 퍼들 형성에 관한 수치해석)

  • Kim, Yeong-Min;Im, Ik-Tae;Kim, U-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.10
    • /
    • pp.1365-1372
    • /
    • 2001
  • In the planar flow casting(PFC) process, the conditions of the melt puddle between nozzle and rotating wheel affect significantly the quality and dimensional uniformity of the downstream ribbon. For stable puddle formation, the nozzle is placed very close to the quenching wheel, so the surface-tension and wall-adhesion forces have an important effect upon the fluid flow.\`In this study the planar flow casting process has been mode]ed using the VOF method for free surface tracking. The transient puddle formation from the present analysis shows good agreements with the previous experimental results. Furthermore, the variation of melt temperature and the corresponding cooling rate of the melt have been examined. The present results also show how the melt puddle can be farmed on the rotating substrate, how the melt flows within the puddle, and how the changes of the process variables affect the puddle formation and its corresponding fluid flow and heat transfer behavior.