• Title/Summary/Keyword: Quench properties

Search Result 62, Processing Time 0.021 seconds

Operating Characteristics of Superconducting Fault Current Limiters Connected in Series by Shunt Resistors (직렬연결된 초전도 한류기의 분로저항에 의한 동작특성)

  • Hyun, Ok-Bae;Choi, Hyo-Sang;Kim, Hye-Rim;Lim, Hae-Ryong;Kim, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.11
    • /
    • pp.737-741
    • /
    • 2000
  • We fabricated resistive superconducting fault current limiters (SFCL) based on YBCO thin films grown on 2-inch diameter $Al_2O_3$ substrates. Two SFCLs with nearly identical properties were connected in series to investigate simultaneous quench. There was a slight difference in the rate of voltage increase between two SFCL units when they were operated independently. This difference resulted in significantly imbalanced power dissipation between the units. This imbalance was removed by connecting a shunt resister to an SFCL in parallel. The appropriate values of shunt resistance were 80 ${\Omega}$ at 75 $V_rms$ and 110 ${\Omega}$ at 120 $V_rms$, respectively. Increased power input at high voltages also reduced the initial imbalance in power dissipation, but with increase in film temperature to higher than 200 K.

  • PDF

Quench Properties of Bi-2223 Pancake Coils with Different Ag/SC Ratio (은비가 다른 Bi-2223 팬케이크 코일의 ?치 특성)

  • 장현만;오상수;하홍수;하동우;장국렬;류강식;김상현
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.109-112
    • /
    • 1999
  • The normal zone propagation (NZP) velocity and V-I characteristics of two Bi-2223 pancake coils with different Ag/SC ratio were investigated by experiment. Non-uniformity of Ic and broad restive transition was oberserbed in two coils. The NZP velocity of azimuth direction is faster than radius direction, and the NZP velocity of coil with higher Ag/SC ratio is faster than another coil with lower Ag/SC ratio.

  • PDF

Electrical properties of a resistive SFCL with shunt resistor (분로저항을 가진 저항형 초전도 한류기의 전기적 특성)

  • Choi, Hyo-Sang;Hyun, Ok-Bae;Kim, Hye-Rim;Hwang, Si-Dole;Kim, Sang-Joon
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.343-347
    • /
    • 1999
  • We fabricated a resistive SFCL having a shunt resistor parallel to it in order to bifurcate the transient current at faults. The SFCL consists of a YBCO film coated with an Au layer (10 ${\omega}$ at room temperature), which is to disperse the heat generated at hot spots in the YBCO film, and the 5 ${\omega}$ shunt resistor. The minimum quench current of the SFCL was found to be 12.2 A$_{peak}$. This SFCL successfully controlled the fault current below 23 A$_{peak}$ which is otherwise to increase up to 113 A$_{peak}$. Bifurcation of the current resulted in the temperature rise of the YBCO/Au film 3 times slower than without the shunt, protecting the SFCL at high currents.

  • PDF

Normal-zone Propagation Properties in Oxide Superconductors (산화물 초전도선재의 상전도전파특성)

  • Kim, Seok-Beom;Ishiyama, Atsushi;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.41-43
    • /
    • 1996
  • This paper describes on concerning electromagnetical and thermal behaviors during normal transition in Bi-2223/Ag superconducting multifilamentary tapes by conduction cooling. Some experiments were carried with operating temperature, 10-40K, and transport current as parameters in zero magnetic field. Sample tapes are transited normally with heater to intiate a quench. The voltage and temperature properties which accord to normal transition are measured by voltage taps and thermocouples attached to sample tapes, we also calculated longitudinal and transverse directions normal-zone propagation velocities from the voltage traces.

  • PDF

Operating properties of the resistive and inductive SFCL with the three-phase fault (3상 단락사고에 대한 저항형과 유도형 한류기의 동작특성)

  • 최효상;현옥배;김상준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.209-212
    • /
    • 1999
  • We studied the operating properties of resistive and inductive SFCLS with 100 $\Omega$ of quench impedance for a three-phase-fault in the 154 kV transmission system. The fault simulation at the phase angles 0$^{\circ}$ , 45$^{\circ}$ , and 90$^{\circ}$ showed that the resistive SFCL limited the fault current less than 16 kA without any DC component after one half cycle from the instant of the fault. On the other hand, the inductive SFCL suppressed the current below 11 kA, but with 3-4 kA of DC component which decreased to zero in 5 cycles. We concluded that the inductive SFCL had higher performance in current limiting but the resistive SFCL was better from the view point of DC components.

  • PDF

Effects of C, Mo and Cr on Hardenability and Mechanical Properties of Boron-Bearing Steels (보론강의 경화능과 인장 특성에 미치는C, Mo, Cr의 영향)

  • Yim, H.S.;Jung, W.Y.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.5
    • /
    • pp.241-247
    • /
    • 2013
  • Hardenability and mechanical properties of boron-bearing steels containing C, Mo and Cr were investigated in this study. Using quench dilatometer, the steel specimens were cooled down to room temperature at different cooling rates to construct continuous cooling transformation diagrams and then the transformation products from austenite were examined. A critical cooling rate was introduced as an index to quantitatively evaluate the hardenability. The C addition to boron-bearing steels did not significantly affect hardenability compared to boron-free steels although it increases the hardenability. With the same content, the Mo addition largely increased the hardenability of boron-bearing steels than the Cr addition because it decreased both the transformation start and finish temperatures at low cooling rates. In particular, the Mo addition completely suppressed the formation of eutectoid ferrite even at the slow cooling rate of $0.2^{\circ}C/s$, whereas the Cr addition nearly suppressed it at the cooling rates above $3^{\circ}C/s$.

Thermomechanical Properties of $\beta$-Sialon Synthesized from Kaolin (카올린으로부터 합성한 $\beta$-Sialon의 열적.기계적 성질)

  • Lee, Hong-Lim;Lim, Hun-Jin;Kim, Shin;Lee, Hyung-Bock
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.349-356
    • /
    • 1987
  • ${\beta}$-Sialon powder was synthesized by the simultaneous reduction and nitridation of Hadong kaolin at 1350$^{\circ}C$ in N2-H2 atmosphere, using graphite as a reducing agent. The synthesized ${\beta}$-Sialon powder was pressurelessly sintered over 1450-1850$^{\circ}C$ in nitrogen atmosphere. The average particle size of ${\beta}$-Sialon powder was about 4.5$\mu\textrm{m}$. The relative density, M.O.R., fracture toughness and micro-hardness of ${\beta}$-Sialon ceramics sintered at 1800$^{\circ}C$ for 1 hour were 92%, 36 kpsi, 2.8MN/㎥/2 and 13.3 GN/㎡, respectively. The critical temperature difference (ΔT) in water quench thermal shock behavior showed about 375$^{\circ}C$ for the synthesized ${\beta}$-Sialon ceramics.

  • PDF

Mechanical and microstructural characteristics of a high-strength boron-alloyed steel for hot press forming (고온성형 위한 고강도보론강의 기계적 특성 및 마이크로구조 연구)

  • Lee, Jong-Shin;Chae, Myoung-Su;Park, Chun-Dal;Kim, Young-Suk
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1355-1360
    • /
    • 2007
  • The use of high strength steels are gradually increasing to reduce the weight of automobile to improve the environmental problems and collision safety. To encounter the traditional disadvantages of high strength steels like as a poor formability and high springback, hot press forming has been developed. By this method, the strength of steel sheet is increased about three times of original one through die quenching process. In order to the design of hot press forming tools by using numerical simulation, the knowledge of mechanical and microstructural characteristics are required. This study show the mechanical and microstructural characteristics of a high strength boron-alloyed steel according to the various quenching conditions.

  • PDF

Properties of a Hybrid Type Superconducting Fault Current Limiter using YBa2Cu3O7 Films (YBa2Cu3O7 박막을 이용한 하이브리드형 초전도 사고전류제한기의 특성)

  • Choi, Hyo-Sang;Cho, Yong-Sun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.391-397
    • /
    • 2006
  • We present investigations of a hybrid type superconducting fault current limiter (SFCL), which consists of transformers and resistive superconducting elements. The secondary windings of the transformer were separated into several electrically isolated circuits and linked inductively with each other by mutual flux, each of which has a superconducting current limiting element of $YBa_2Cu_3O_7$ (YBCO) stripes as a current limiting element. Simple connection in series of the SFCL elements tends to produce ill-timed quenching because of power dissipation unbalance between SFCL elements. Both electrical isolation and mutual flux linkage of the elements provides a solution to power dissipation unbalance, inducing simultaneous quench and current redistribution of the YBCO films. This design enables to increase the voltage rating of SFCL with given YBCO stripes.

Thermo-mechanical Simulation of Boron Steel Cylinders during Heating and Rapid Cooling (원통형 보론강을 사용한 가열-급냉공정에서의 열변형 해석)

  • Suh, C.H.;Kwon, T.H.;Kang, K.P.;Choi, H.Y.;Kim, Y.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.475-481
    • /
    • 2014
  • Water quenching is one method of cooling after hot forming, which is presently being used for the manufacturing of automobile parts. The formed parts at room temperature are heated and then cooled rapidly in a water bath to produce high strength. The formed parts may undergo excessive thermal distortion during the water quench. In order to predict the distortion during water quenching, a coupled thermo-mechanical simulation is needed. In the current study, the simulation of heating and cooling of boron steel cylinders was performed. The material properties for the simulation were calculated from JMatPro, and the convective heat transfer coefficient was obtained from experimental tests. The results show that the thermal distortion and the residual stresses are well predicted by the coupled simulation.