• 제목/요약/키워드: Quasi-three-dimensional model

검색결과 81건 처리시간 0.025초

단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석 (Impact Behavior of Laminated Composite using Progressive Failure Model)

  • 강문수;이경우;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

가상수술기를 위한 비선형 생체 모델의 개발 (Development of a nonlinear biomechanical soft tissue model for a virtual surgery trainer)

  • 김정
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.911-914
    • /
    • 2005
  • Soft tissue characterization and modeling based on living tissues has been investigated in order to provide a more realistic behavior in a virtual reality based surgical simulation. In this paper, we characterize the nonlinear viscoelastic properties of intra-abdominal organs using the data from in vivo animal experiments and inverse FE parameter estimation algorithm. In the assumptions of quasi-linear-viscoelastic theory, we estimated the nonlinear material parameters to provide a physically based simulation of tissue deformations. To calibrate the parameters to the experimental results, we developed a three dimensional FE model to simulate the forces at the indenter and an optimization program that updates new parameters and runs the simulation iteratively. The comparison between simulation and experimental behavior of pig intra abdominal soft tissue are presented to provide a validness of the tissue model using our approach.

  • PDF

Time domain flutter analysis of the Great Belt East Bridge

  • Briseghella, Lamberto;Franchetti, Paolo;Secchi, Stefano
    • Wind and Structures
    • /
    • 제5권6호
    • /
    • pp.479-492
    • /
    • 2002
  • A finite element aerodynamic model that can be used to analyse flutter instability of long span bridges in the time domain is presented. This approach adopts a simplified quasi-steady formulation of the wind forces neglecting the vortex shedding effects. The governing equations used are effective only for reduced velocities $V^*$ sufficiently great: this is generally acceptable for long-span suspension bridges and, then, the dependence of the wind forces expressions of the flutter derivatives can be neglected. The procedure describes the mechanical response in an accurate way, taking into account the non-linear geometry effects (large displacements and large strains) and considering also the compressed locked coil strands instability. The time-dependence of the inertia force due to fluid structure interaction is not considered. The numerical examples are performed on the three-dimensional finite element model of the Great Belt East Bridge (DK). A mode frequency analysis is carried out to validate the model and the results show good agreement with the experimental measurements of the full bridge aeroelastic model in the wind tunnel tests. Significant parameters affecting bridge response are introduced and accurately investigated.

가상 반사압력을 이용한 사출성형의 준3차원 유동해석 (The Quasi 3-D Flow Simulation in injection Molding Using Virtual Pressure Reflection)

  • 이호상;신효철
    • 대한기계학회논문집
    • /
    • 제16권7호
    • /
    • pp.1294-1306
    • /
    • 1992
  • 본 연구에서는 IBPR 방법을 바탕으로 캐비티형상이 동일평면상에 있지 않은 경우에 대한 준3차원 유동해석과 주입기구가 있는 경우에 대한 유동해석을 별도로 수 행하여 실험결과와 비교하였다.해석결과는 실험과 잘 일치하였으며 그를 통해 앞서 개발한 IBRP방법이 보다 일반적인 경우에서의 캐비티 유동해석으로 확장, 응용될 수 있음을 확인할 수 있었다.

C/SiC 재료의 물성 측정을 위한 준 해석적 방법 (Quasi-Analytical Method of C/SiC Material Properties Characterization)

  • 김영국
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.437-440
    • /
    • 2010
  • 이 논문은 발사체 노즐에 사용되는 내열성 재료인 C/SiC에 대한 이방성 물성을 예측하는 방법으로, 평면 방향의 실험 데이터를 이용해서 9개의 엔지니어링 물성을 간단하고 효과적으로 계산하는 준 이론적 접근에 대해 설명하였다. 이 방법은 C/SiC 복합재료를 직조 보강재의 굴곡율에 따라 세 층으로 이상화 하여, 고전 적층 평판이론으로 계산한다. 평면 방향으로 실행된 실험 데이터와 직조 구조물의 굴곡율을 초기 데이터로 이용하며, 측정이 어려운 두께 방향의 물성을 효과적으로 얻을 수 있었다. 예제를 통하여 이 방법의 유용성을 증명하였다.

  • PDF

Evolution of post-peak localized strain field of steel under quasi-static uniaxial tension: Analytical study

  • Altai, Saif L.;Orton, Sarah L.;Chen, Zhen
    • Structural Engineering and Mechanics
    • /
    • 제83권4호
    • /
    • pp.435-449
    • /
    • 2022
  • Constitutive modeling that could reasonably predict and effectively evaluate the post-peak structural behavior while eliminating the mesh-dependency in numerical simulation remains to be developed for general engineering applications. Based on the previous work, a simple one-dimensional modeling procedure is proposed to predict and evaluate the post-peak response, as characterized by the evolution of localized strain field, of a steel member to monotonically uniaxial tension. The proposed model extends the classic one-dimensional softening with localization model as introduced by (Schreyer and Chen 1986) to account for the localization length, and bifurcation and rupture points. The new findings of this research are as follows. Two types of strain-softening functions (bilinear and nonlinear) are proposed for comparison. The new failure criterion corresponding to the constitutive modeling is formulated based on the engineering strain inside the localization zone at rupture. Furthermore, a new mathematical expression is developed, based on the strain rate inside and outside the localization zone, to describe the displacement field at which bifurcation occurs. The model solutions are compared with the experimental data on four low-carbon cylindrical steel bars of different lengths. For engineering applications, the model solutions are also compared to the experimental data of a cylindrical steel bar system (three steel bars arranged in series). It is shown that the bilinear and nonlinear softening models can predict the energy dissipation in the post-peak regime with an average difference of only 4%.

선체수평진동(船體水平振動)에 있어서의 부가질량(附加質量) 3차원수정계수(次元修正係數) (Three Dimensional Correction Factors for the Added Mass in the Horizontal Vibration of Ships)

  • 김극천;유병건
    • 대한조선학회지
    • /
    • 제11권1호
    • /
    • pp.9-16
    • /
    • 1974
  • To contribute towards more accurate estimation of the virtual inertia coefficient for the horizontal vibration of ships, three dimensional correction factor $J_H$ for the added mass of finitely long elliptic prismatic bars in horizontal vibration in a free surface of an ideal fluid are calculated. In the problem formulation Dr. T. Kumai's quasi-finite length concept[1,11,12] is employed. Now that, in Dr. Kumai's work[1] for the horizontal vibration the mathematical model was a circular cylinder, the principal aim of the authors' work is to investigate the influence of the beam-draft ratio B/T on $J_H$. The numerical results of this work are shown in Fig.3 graphically, from which we may recognize that the influence of B/T on $J_H$ is remarkable as much as that of the length-draft ratio L/T(refer to Fig.1 also). In Fig.3 the curves for B/T=2.00 are of those based on Dr. Kumai's result[1]. On the other hand, the experimental data obtained by Burril et al.[9] for the horizontal vibration of finitely long prismatic bars of various cross-section shapes are compared with the theoretical added mass coefficients defined by combination of the authors' $J_H$ from Fig.3 and two dimensional coefficients $C_H$ obtained by Lewis form approximation for the corresponding sections. They are in reasonable correspondence with each other as shown in Fig.2. Finally, considering that the longitudinal profile of full-form ship's hull is well resembled to that of an elliptic cylinder and that the influences of other factors such as the sectional area coefficient and the shape of section contour itself can be well merged in the two dimensional added mass coefficient, the authors recommend that the data given in Fig.3 may be successfully adopted for the three dimensional correction factor the added mass in the horizontal vibration of hull-form ships.

  • PDF

A Study on Mesh Sensitivity of 3-D Homoginized Crack Model for Concrete Fracture Analysis

  • 남진원;송하원;변근주;방춘석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.462-465
    • /
    • 2004
  • Since quasi-brittle materials like concrete show strain localization behavior accompanied by strain softening, a numerical drawback such as mesh sensitivity is appeared in the finite element analysis. In this paper, the so-called homogenized crack model which was introduced for three dimensional finite element analysis of fracture in concrete is studied for the mesh size dependence problem in fracture analysis. A homogenized crack element having a velocity discontinuity. is averaged to remove the mesh sensitivity in finite element analysis of concrete fracture. Numerical examples show that softening behavior of concrete fracture is successfully predicted without mesh sensitivity using the homogenized crack model.

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spatial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • 한국수자원학회논문집
    • /
    • 제33권S1호
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triagulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triagular facets : the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally ; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF

Development of a distributed rainfall-runoff model with TIN-based topographic representation and its application to an analysis of spacial variability of soil properties on runoff response

  • Tachikawa, Yasuto;Shiiba, Michiharu
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2000년도 학술발표회 논문집
    • /
    • pp.28-36
    • /
    • 2000
  • A TIN, Triangulated Irregular Network, based topographic modeling method and a distributed rainfall-runoff model using the topographic representation is presented. In the TIN based topographic representation, a watershed basin is modeled as a set of contiguous non-overlapping triangular facets: the watershed basin is subdivided according to streamlines to deal with water movement one-dimensionally; and each partitioned catchment is approximated to a slope element having a quasi-three-dimensional shape by using cubic spline functions. On an approximated slope element, water movement is represented by combined surface-subsurface kinematic wave equations considering a change of slope gradient and slope width. By using the distributed rainfall-runoff model, the effects of spatial variability of soil properties on runoff response are examined.

  • PDF