• 제목/요약/키워드: Quasi-static Test

검색결과 329건 처리시간 0.02초

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

불규칙 가진시 하이브리드기법을 이용한 실동하중 해석시스템 (Analysis System for Practical Dynamic Load with Hybrid Method under Random Frequency Vibration)

  • 송준혁;양성모;강희용;유효선
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.33-38
    • /
    • 2008
  • Most structures of vehicle are composed of many substructures connected to one another by various types of mechanical joints. In vehicle engineering, it is important to study these jointed structures under random frequency vibration for the evaluations of fatigue life and stress concentration exactly. It is rarely obtained the accurate load history of specified positions in a jointed structure because of the errors such as modeling, measurement, and etc. In the beginning of design, exact load data are actually necessary for the fatigue strength and life analysis to minimize the cost and time of designing. In this paper, the hybrid method of practical dynamic load determination is developed by the combination of the principal stresses from F. E. Analysis and test of a jointed structure. Least square pseudo inverse matrix is adopted to obtain an inverse matrix of analyzed stresses matrix. The error minimization method utilizes the inaccurate measured error and the shifting error that the whole data is stiffed over real data. The least square criterion is adopted to avoid these errors. Finally, to verify the proposed system, a heavy-duty bus is analyzed. This measurement and prediction technology can be extended to the different jointed structures.

흡수경계조건의 아스팔트 콘크리트 궤도 동적 해석에의 적용 (Application of the Absorbing Boundary Condition in Moving Force Analysis of Asphalt Concrete Track)

  • 이성혁;정근영;정우영
    • 한국철도학회논문집
    • /
    • 제19권1호
    • /
    • pp.54-66
    • /
    • 2016
  • 이 연구에서는 흡수경계조건을 적용하여 경계부분에서 발생한 갑작스런 하중조건의 변화에 의해 발생한 탄성파의 전달 및 반사현상을 감소시키고자 하였으며, 흡수경계조건이 사용 유무에 따른 효과를 검증하였다. 또한, 정점하중재하의 경우와 이동하중에 의한 동적해석결과를 비교함으로써 정점하중재하가 이동하중을 적절히 표현할 수 있는가의 여부를 분석하였다. 주행속력의 변화에 따른 KTX 열차조건에서의 이동하중에 의한 동적해석을 수행하여 아스팔트 콘크리트 궤도에서의 동적안정성을 검토하였으며, 준정적인 표준 열차하중에 의한 해석결과를 비교함으로써 아스팔트 콘크리트 궤도의 구조 안전성을 확인하였다.

직조된 탄소, 유리 및 케블라 섬유 복합소재 튜브의 압축하중하에서 파손 메커니즘 분석 연구 (A Study on Failure Mechanisms of Composite Tubes with Woven Fabric Carbon, Glass and Kevlar/epoxy Under Compressive Loadings)

  • 김정석;윤혁진;이호선;권태수
    • 한국철도학회논문집
    • /
    • 제12권4호
    • /
    • pp.590-596
    • /
    • 2009
  • 본 연구에서는 탄소, 유리, 케블라 및 탄소-케블라 하이브리드 섬유로 제작된 원형튜브를 이용하여 각 소재별 에너지 흡수특성과 파손메커니즘을 규명하였다. 이를 위해 각 튜브에 대한 10mm/min의 준정적 압축시험을 수행하였다. 시험결과 탄소섬유 튜브가 가장 에너지 흡수특성이 우수했으며 탄소-케블라 하이브리드 섬유 튜브가 가장 낮은 에너지 흡수율을 보였다. 또한, 각 소재별 에너지 흡수메커니즘을 분석한 결과 탄소 및 유리섬유튜브는 취성파괴 모드로 압축되었다. 또한, 케블라 섬유 튜브는 국부좌굴에 의한 접힘모드가 지배적이고, 탄소와 케블라 하이브리드 섬유 튜브의 경우 단층굽힘과 국부좌굴모드가 혼합되어 나타났다.

단방향 케블라/에폭시, 탄소-케블라/에폭시 복합재 튜브의 축방향 압괴 거동에 대한 연구 (Study on the Axial Crushing Behaviors of UD Kevlar/Epoxy and Carbon-Kevlar/Epoxy Composite Tubes)

  • 김형욱;김정석;정현승;윤혁진;권태수
    • 한국철도학회논문집
    • /
    • 제13권3호
    • /
    • pp.271-277
    • /
    • 2010
  • 본 논문에서는 에너지 흡수부재로 사용될 수 있는 단방향 케블라/에폭시 및 단방향 탄소-케블라/에폭시 튜브의 압괴거동을 예측할 수 있는 해석모델을 확립하고 이를 시험을 통해 검증하였다. 해석모델은 상용 외연적 해석 프로그램인 LS-DYNA의 2D 쉘 요소와 Chang-Chang 파손기준식을 이용하였다. 또한, 해석에 적용된 소재의 기계적 물성치는 시험을 통해 얻었다. 해석모델은 원형 튜브에 대한 10mm/min의 준정적 압괴 시험 결과와 비교를 통해 검증하였다. 그 결과 케블라/에폭시 튜브의 하중-변위 곡선은 거의 일치했으며 무게당 흡수 에너지(SEA)도 6% 미만의 오차에서 잘 일치하였다. 하지만, 탄소-케블라/에폭시 튜브는 시험과 약간의 차이를 보이고 있다.

심해저용 전기 저항 용접 소구경 송유관 소재의 온도 및 변형률 속도 에 따른 유동 응력 특성 (Flow Stress Properties of Electric Resistance Welded Small-Sized Subsea Pipeline Subjected to Temperature and Strain Rate Variations)

  • 김영훈;박성주;윤성원;정준모
    • 한국해양공학회지
    • /
    • 제29권3호
    • /
    • pp.241-248
    • /
    • 2015
  • A subsea pipeline for oil/gas transportation or gas injection is subjected to extreme variations in internal pressure and temperature, which can involve a strain rate effect on the pipeline material. This paper describes the flow stress characteristics of a pipeline material called API 5L X52N PSL2, using and experimental approach. High-speed tensile tests were carried out for two metal samples taken from the base and weld parts. The target temperature was 100℃, but two other temperature levels of –20℃and 0℃ were taken into account. Three strain rates were also considered for each temperature level: quasi static, 1/s, and 10/s. Flow stress data were proposed for each temperature level according to these strain rates. The dynamic hardening behaviors of the base and weld metals appeared to be nonlinear on the log-scale strain rate axis. A very high material constant value was required for the Cowper-Symonds constitutive equation to support the experimental results.

응력연화거동을 고려한 고무 재료의 변형률 에너지 함수 결정 (Determination of Strain Energy Function of Rubber Materials Considering Stress Softening Behavior)

  • 김완수;홍성인
    • Elastomers and Composites
    • /
    • 제42권3호
    • /
    • pp.168-176
    • /
    • 2007
  • 카본블랙이나 실리카 등으로 보강된 고무 가황체는 순수한 초기상태에서 하중(부하)를 가하고 제거하는 반복과정에서 응력은 점점 연화되어 초기상태에서 얻어진 응력보다 작게 나타난다. 이러한 응력 연화 현상을 Mullins 효과라고 부른다. 이러한 응력 연화 거동을 이론적으로 표현하기 위하여 Ogden-Roxburgh 등이 손상 파라미터를 이용하여 제안한 pseudo-elastic 개념을 적용하여 보강제가 함유된 고무 가황체의 변형률 에너지 함수를 구하였다. 카본블랙으로 보강된 NR 가황체를 이용하여 준정적 반복 부하 시험을 실시하였으며, pseudo-elastic 모델에서의 손상 파라미터가 제하 및 재 부하 시 응력-변형률 곡선에 어떠한 영향을 주는가와 더불어 손상 파라미터의 두 가지 변수인 r과 m의 물리적 의미를 파악하였다. 또한 보강제 함량을 달리하여 제작한 고무 가황체의 응력연화 변형률 에너지 함수를 결정하고 비교하였다.

Seismic behavior of reinforced concrete T-shaped columns under compression-bending-shear and torsion

  • Ping, Chen Zong;Weiwei, Su;Yang, Yang
    • Earthquakes and Structures
    • /
    • 제20권4호
    • /
    • pp.431-444
    • /
    • 2021
  • T-shaped column is usually used as side column in buildings, which is one of the weak members in structural system. This paper presented a quasi-static cyclic loading experiment of six specimens of reinforced concrete (RC) T-shaped columns under compression-flexure-shear-torsion combined loadings to investigate the effect in the ratio of torsion to moment (T/M) and axial compression ratio (n) and height-thickness ratio of flange plate (φ) on their seismic performance. Based on the test results, the failure characteristics, hysteretic curves, ductility, energy dissipation, stiffness degradation and strength degradation were analyzed. The results show that the failure characteristics of RC T-shaped columns mainly depend on the ratio of torsion to moment, which can be divided into bending failure, bending-torsion failure and shear-torsion failure. With the increase of T/M ratio, the torsion ductility coefficient increased, and in a suitable range, the torsion and horizontal displacement ductility coefficient of RC T-shaped columns could be effectively improved with the increase of axial compression ratio and the decrease of height-thickness ratio of flange plate. Besides, the energy dissipation capacity of the specimens mainly depended on the bending and shear energy dissipation capacity. On the other hand, the increase of axial compression ratio and the ratio of torsion to moment could accelerate the torsional and bending stiffness degradation of RC T-shaped columns. Moreover, the degradation coefficient of torsion strength was between 0.80 and 0.98, and that of bending strength was between 0.75 and 1.00.

Experimental study of buckling-restrained brace with longitudinally profiled steel core

  • Lu, Junkai;Ding, Yong;Wu, Bin;Li, Yingying;Zhang, Jiaxin
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.715-728
    • /
    • 2022
  • A new type of buckling-restrained braces (BRBs) with a longitudinally profiled steel plate working as the core (LPBRB) is proposed and experimentally investigated. Different from conventional BRBs with a constant thickness core, both stiffness and strength of the longitudinally profiled steel core along its longitudinal direction can change through itself variable thickness, thus the construction of LPBRB saves material and reduces the processing cost. Four full-scale component tests were conducted under quasi-static cyclic loading to evaluate the seismic performance of LPBRB. Three stiffening methods were used to improve the fatigue performance of LPBRBs, which were bolt-assembled T-shaped stiffening ribs, partly-welded stiffening ribs and stiffening segment without rib. The experimental results showed LPBRB specimens displayed stable hysteretic behavior and satisfactory seismic property. There was no instability or rupture until the axial ductility ratio achieved 11.0. Failure modes included the out-of-plane buckling of the stiffening part outside the restraining member and core plate fatigue fracture around the longitudinally profiled segment. The effect of the stiffening methods on the fatigue performance is discussed. The critical buckling load of longitudinally profiled segment is derived using Euler theory. The local bulging behavior of the outer steel tube is analyzed with an equivalent beam model. The design recommendations for LPBRB are presented finally.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.