• 제목/요약/키워드: Quasi-static Test

검색결과 329건 처리시간 0.024초

저밀도 폴리우레탄 포옴재료의 유한요소 모델링 (Finite Element Modeling of Low Density Polyurethane Foam Material)

  • 김원택;최형연
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.183-188
    • /
    • 1996
  • The compressive stress-strain response of Low Density Polyurethane foam material is modeled using the finite element method. A constitutive equation which include experimental constants based on quasi-static and dynamic uniaxial compression test is proposed. Impact test with different impactor masses and velocities are performed to verify the proposed model. The comparison between impact test and finite element analysis shows good agreements.

  • PDF

분산 분석을 이용한 자동차 안전벨트 준정적 해석과 인장시험 상관성 개선 (Quasi-static Analysis of Vehicle Seatbelt Using Analysis of Variance and Improvement of Tensile Test Correlation)

  • 이광섭;어영우;김삼성;김두용;송택림;이경상
    • 한국자동차공학회논문집
    • /
    • 제24권3호
    • /
    • pp.273-278
    • /
    • 2016
  • This study makes a relative comparison of the results of tensile test and quasi-static analysis using AGL(Adjuster Guide Loop) model that plays a role in adjusting the height of shoulder belt, of the components of the vehicle seatbelt system and attempts to propose a method of reducing the error rate of the quasi-static analysis technique effectively. This study selects two major factors affecting the result of an analysis, draws the result of analysis through the method of experimental design, one of the statistical techniques and understands the contribution rate of the major factors affecting the result of the analysis through ANOVA(Analysis of Variance).

점용접된 차체구조용 모자형 단면부재의 축방향 압궤특성 (Collapse Characteristics of vehicle Members with Spot Welded Hat-Shaped Section under Axial Compression)

  • 차천석;양인영;전형주;김용우;김정호
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.20-27
    • /
    • 2000
  • The hat shaped section members, spot welded strength resisting structures are the most energy absorbing ones of automobile components during the front-end collision. Under the static axial collapse load in velocity of 10mm/min and quasi-static collapse load in velocity of 1000mm/min, the collapse characteristics of the hat shaped section and double hat shaped section member have been analyzed by axial collapse tests with respect to the variations of spot weld pitches on the flanges. In addition, the quasi-static collapse simulations have been implemented in the same condition to the experiment's using FEM package, LS-DYNA3D. The simulated results have been verified in comparison with these from the quasi-static axial collapse tests. With the computational approaches the optimal energy absorbing structures can be suggested. Simulations are so helpful that the optimized data be supplied in designing vehicles in advance.

  • PDF

저형상비 RC교각의 실물모형 준정적실험 (Quasi Static Test of Real Scaled RC Piers with Low-Aspect Ratio)

  • 조창백;곽임종;김영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.218-221
    • /
    • 2006
  • The past Korean Bridge Design Specifications have no limitation on the amount of lap splices of longitudinal bars in the plastic hinge zone of piers. A majority of bridge piers which have been non-seismically designed might have some lap splices in plastic hinge zone. Also a number of those piers in Korea have a low aspect ratio(height/section area). So, some problems such as low ductility behavior may happen. In this study, the real pier which was non-seismically designed and has a low aspect ratio was selected for the quasi-static tests. Two groups of full scaled RC pier models of which aspect ratios are about 2.26 and about 2.67 were fabricated. And then, quasi-static tests according to the drift level history method were implemented. From the test results, the failure of these test specimens have been shown in the complex shear-flexural or shear modes. The low aspect ratio and the lap splice have largely influenced on the seismic performance of bridge piers.

  • PDF

사각관의 붕괴해석 및 실험에 관한 연구 (A Study on the Axial Crush Analysis of a Rectangular Tube with Experimental Comparison)

  • 강신유;한동철
    • 대한기계학회논문집
    • /
    • 제17권10호
    • /
    • pp.2555-2562
    • /
    • 1993
  • In this paper, the axial crush of the rectangular STS304 tube is analyzed using DYNA3D, and 10 models are tested under quasi-static load. The deformed shapes of analysis and test are present, and the analysis results are compared with the results of quasi-static test. This paper describes that free rotational boundary condition causes a very similar deformed shapes to expermental results, and using the elastic buclking modes as initial imperfecion shapes, the deformed shapes are very close to the experimental shapes.

준정적 실험에 의한 중공원형 콘크리트 교각의 소성응답 연구 (Research of Plastic response by Quasi-Static Test for Circulr Hollow R.C. Bridge Pier)

  • 정영수
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.247-255
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers circular hollow columns are widely used in Korean highway bridges Since the occurrence of 1995 Kobe earthquake there have been much concern about seismic design for various infrastructures inclusive of bridge structures. It is however understood that there are not much research works for nonlinear behavior circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is to investigate nonlinear behavior of hollow reinforced concrete bridge piers under the quasi-static cyclic load test and than to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It can be concluded from Quasi-static test for 7 bridge piers that approximate 4-5 ductility factor can be experimentally obtained for bridge piers nonseismically designed in conventional way which approximate 5-6 ductility factor for those seismically designed.

  • PDF

Strength and stiffness of cold-formed steel portal frame joints using quasi-static finite element analysis

  • Mohammadjani, Chia;Yousefi, Amir M.;Cai, Shu Qing;Clifton, G. Charles;Lim, James B.P.
    • Steel and Composite Structures
    • /
    • 제25권6호
    • /
    • pp.727-734
    • /
    • 2017
  • This paper describes a quasi-static finite element analysis, which uses the explicit integration method, of the apex joint of a cold-formed steel portal frame. Such cold-formed steel joints are semi-rigid as a result of bolt-hole elongation. Furthermore, the channel-sections that are being connected have a reduced moment capacity as a result of a bimoment. In the finite element model described, the bolt-holes and bolt shanks are all physically modelled, with contact defined between them. The force-displacement curves obtained from the quasi-static analysis are shown to be similar to those of the experimental test results, both in terms of stiffness as well as failure load. It is demonstrated that quasi-static finite element analysis can be used to predict the behavior of cold-formed steel portal frame joints and overcome convergence issues experienced in static finite element analysis.

차량재하시험에 의한 구조물 동특성 평가에 웨이블렛변환의 이용 (Application of Wavelet Transform in Estimating Structural Dynamic Parameters by Vehicle Loading Test)

  • 박형기
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권2호
    • /
    • pp.129-136
    • /
    • 2005
  • 교량의 안전진단 과정에서 안전성 평가를 위해 전면교통통제 하에 차량재하시험이 일반적으로 실시된다. 교통통제의 단점을 개선시킨 최근에 제안된 의사정적재하시험에서는 계측된 시간이력 데이터 중 자유진동 부분을 퓨리에변환시켜 고유진동수를 구한다. 이렇게 구해진 고유진동수에는 분석기법에 따른 오차가 포함되며, 자유진동 데이터의 획득에도 다소 애로사항이 따른다. 이 연구에서는 Morlet wavelet를 모웨이블렛으로 하는 웨이블렛변환을 의사정적재하시험으로 계측한 데이터에 적용하여 구한 고유진동수와 감쇠율이 신뢰성을 가지며, 이 분석기법이 의사정적재하시험에 의한 차량재하시험의 자료 분석에 적용 가능하고 타당성이 있음을 보인다.

실시간 다물체 차량 해석을 위한 준정적법의 컴플라이언스 효과 모델링 (Compliance Effect Modeling Based on Quasi-Static Analysis for Real-Time Multibody Vehicle Dynamics)

  • 김성수;정완희;하경남
    • 대한기계학회논문집A
    • /
    • 제32권2호
    • /
    • pp.162-169
    • /
    • 2008
  • Compliance effect consideration method for real-time multibody vehicle dynamics is proposed using quasi-static analysis. The multibody vehicle model without bush elements is used based on the subsystem synthesis method which provides real-time computation on the multibody vehicle model. Reaction forces are computed in the suspension subsystem. According to deformation from the quasi-static analysis using reaction forces and bush stiffness, suspension hardpoint locations and suspension linkage orientation are changed. To validate the proposed method, quarter car simulations of McPherson strut and multilink suspension subsystems are performed. Full car bump run simulations and fish hook handling test simulations are also carried out comparing with the ADAMS vehicle model with bush elements. CPU times are also measured to see the real-time capabilities of the proposed method.

경량화용 박육부재의 형상비가 압궤특성에 미치는 영향 (Influence of dimensional ratio on collapse characteristics for the thin-walled structures of light weight)

  • 정종안;김정호;양인영
    • 한국안전학회지
    • /
    • 제13권3호
    • /
    • pp.11-23
    • /
    • 1998
  • In this study, collapse test of thin-walled structure is performed under axially quasi-static and impact load in collapse characteristic to develop the optimum structural member for a light-oriented automobile. Furthermore, the energy-absorbing capacity is observed according to the variety of configuration(circular, square), aspect ratio in aluminum specimen to obtain basic data for the improved member of vehicle. In both quasi-static and impact collapse test, Al circular specimens collapse, in general, with axisymmetric mode in case of thin thickness while collapse with non-axisynmetric mode according to the thickness increase. For Al rectangular specimens, they collapse with axisymmetric mode in case of thin thickness, with mixed collapse mode according to the increase of thickness. In terms of initial max. load, Al square specimen turns out the best member among specimens, and then Al square, circular and circular with large scaling ratio, respectively. In case of quasi-static compression test, the absorbed energy per unit volume and mass shows higher in Al circular specimen, and then Al square, circular with large scaling ratio, respectively, according to shape ratio the absorbed energy per unit volume and mass in case of max. impact compression load is higher than that of static load. But the absorbed energy per unit volume and mass shows that Al circular specimen is the best member. Especially, unlike max. compression loan, the absorbed energy per unit volume and mass in impact test turns out the low value.

  • PDF