• Title/Summary/Keyword: Quasi-static Loading

Search Result 231, Processing Time 0.024 seconds

Instrumented Impact Test using Subsize Charpy Specimen for Evaluating Impact Fracture Behavior in Bulk Amorphous Metals (벌크 아몰퍼스 금속의 충격파괴 거동 평가를 위한 미소 샬피 시험편을 사용한 계장화 충격 시험법)

  • Shin, Hyung-Seop;Ko, Dong-Kyun;Jung, Young-Jin;Oh, Sang-Yeob;Kim, Moon-Saeng
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.101-106
    • /
    • 2003
  • In order to investigate the mechanical behavior of newly developed materials, the evaluation of mechanical properties using small-size specimen is essential. For those purposes, an instrumented impact testing apparatus, which provides the load-displacement curve under impact loading without oscillations, was devised. To develop the test procedure with the setup, the impact behaviors of various kinds of structural materials such as S45C, SCM4, Ti alloys (Ti-6V-4Al) and Zr-based bulk amorphous metal, were investigated through the instrumented Charpy V-notch impact tests. The calibrations of the dynamic load and displacement that was calculated based on the Newton' second law were carried out through the quasi-static load test and the comparison of a directly measured value using a laser displacement meter. Satisfactory results could be obtained. The crack initiation and propagation processes during impact fracture could be well divided on the curve, depending on the intrinsic characteristic of specimen tested; ductile or brittle. The absorbed impact energy in Zr-basd BAM was largely used for crack initiation not for crack propagation process. The fracture surfaces under impact loading showed different feature when compared with the static cases.

  • PDF

Static and dynamic analysis of cable-suspended concrete beams

  • Kumar, Pankaj;Ganguli, Abhijit;Benipal, Gurmail
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.611-620
    • /
    • 2017
  • A new theory of weightless sagging planer elasto-flexible cables under point loads is developed earlier by the authors and used for predicting the nonlinear dynamic response of cable-suspended linear elastic beams. However, this theory is not valid for nonlinear elastic cracked concrete beams possessing different positive and negative flexural rigidity. In the present paper, the flexural response of simply supported cracked concrete beams suspended from cables by two hangers is presented. Following a procedure established earlier, rate-type constitutive equations and third order nonlinear differential equations of motion for the structures undergoing small elastic displacements are derived. Upon general quasi-static loading, negative nodal forces, moments and support reactions may be introduced in the cable-suspended concrete beams and linear modal frequencies may abruptly change. Subharmonic resonances are predicted under harmonic loading. Uncoupling of the nodal response is proposed as a more general criterion of crossover phenomenon. Significance of the bilinearity ratio of the concrete beam and elasto-configurational displacements of the cable for the structural response is brought out. The relevance of the proposed theory for the analysis and the design of the cable-suspended bridges is critically evaluated.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

Effect of Constitutive Material Models on Seismic Response of Two-Story Reinforced Concrete Frame

  • Alam, Md. Iftekharul;Kim, Doo-Kie
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.2
    • /
    • pp.101-110
    • /
    • 2012
  • This paper focuses on the finite element (FE) response sensitivity and reliability analyses considering smooth constitutive material models. A reinforced concrete frame is modeled for FE sensitivity analysis followed by direct differentiation method under both static and dynamic load cases. Later, the reliability analysis is performed to predict the seismic behavior of the frame. Displacement sensitivity discontinuities are observed along the pseudo-time axis using non-smooth concrete and reinforcing steel model under quasi-static loading. However, the smooth materials show continuity in response sensitivity at elastic to plastic transition points. The normalized sensitivity results are also used to measure the relative importance of the material parameters on the structural responses. In FE reliability analysis, the influence of smoothness behavior of reinforcing steel is carefully noticed. More efficient and reasonable reliability estimation can be achieved by using smooth material model compare with bilinear material constitutive model.

Stress Analysis in the Elastic-Plastic Analysis of Railway Wheels

  • Ashofteh, Roya Sadat;Mohammadnia, Ali
    • International Journal of Railway
    • /
    • v.7 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Fatigue and wear in wheels is often due to the forces and loading. These certainly have fundamental effects on reducing the wheel life and increasing the costs related to repairing and maintenance. Modeling and stress analysis of a wheel sample existing in the Iranian fleet have been performed in its contact with U33 and UIC60 rails. The results have been reviewed and analyzed in elastic and elastic-plastic phase and under static (railcar weight) and quasi static loads. Moreover, effects of wheel diameter, axle load, wheel material, rail type are analyzed.

Performance Evaluation of Scale-down Concrete Filled FRP Columns (축소모형실험을 통한 콘크리트 충전 FRP 합성교각의 성능 평가)

  • Youm, Kwang-Soo;Lee, Seung-Hwe;Lee, Young-Ho;Song, Jae-Joon;Hwang, Yoon-Koog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.135-144
    • /
    • 2009
  • The present paper represents experimental studies on the performance of concrete filled FRP columns. Eight scale-down specimens were conducted by quasi-static cyclic loading test. FRP thickness, concrete strength, horizontal rebar ratio, and diameter were selected as test parameters. The capacities of ductility for cyclic loading was evaluated and the damping ratio and failure mode from the stiffness reduction of each test specimen were compared.

Evaluation on Interaction Surface of Plastic Resistance for Exposed-type Steel Column Bases under Biaxial Bending

  • Choi Jae-hyouk;Ohi Kenichi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.826-835
    • /
    • 2005
  • Exposed-type steel column bases are used widely in low-rise building construction. Numerous researchers have examined methods to identify their stiffness and strength, but those studies have heretofore been restricted to in-plane behaviors. This paper presents an experimental investigation of inelastic behaviors of square hollow section (SHS) steel column bases under biaxial bending. Two types of failure modes are considered : anchor bolt yielding and base plate yielding. Different pinching effects and interaction surfaces for biaxial bending are observed for these two modes during bi-directional quasi-static cyclic loading tests. Differences are elucidated using limit analyses based on a simple analytical model.

Low cycle fatigue damage assessment in steel beams

  • Daali, M.L.;Korol, R.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.341-358
    • /
    • 1995
  • The results of a series of ten W-shaped test specimens subjected to monotonic, quasi-static cyclic loading and fatigue type of loading in the form of constant amplitude tests are presented. The objectives were to assess and compare the rotation capacity and energy absorption of monotonically and cyclically loaded beams, and for the latter specimens to document the deterioration in the form of low cycle fatigue due to local buckling. In addition, strength and energy dissipation deterioration and damage models have been developed for the steel beam section under consideration. Finally, a generalized model which uses plate slenderness values and lateral slenderness is proposed for predicting rate in strength deterioration per reversal and cumulated damage after a given number of reversals.

A Study on the Sensitivity of Reinforced Concrete Element Design Factors (변형율속도변화에 대한 철근콘크리트부재 설계인자의 민감성 연구)

  • Sim, Jong Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.4
    • /
    • pp.9-14
    • /
    • 1989
  • A strain rate-dependent element model was used to study the loading rate-sensitivity of R/C beams and columns with different design factors. Conclusions were derived regarding the differences between the element axial/flexural performance under impulsive and quasi-static loads. Practical design formalas for predicting the loading rate-dependent axial and flexural strengths of R/C elements were also suggested.

  • PDF

Stress Analysis on the Profile of Blast Wall with Finite Element Method (유한요소법을 이용한 방폭벽 프로파일에 대한 응력해석)

  • Kim, Byung-Tak;Koh, Sung-Wi;Kim, Kwang-Heui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.130-137
    • /
    • 2012
  • Blast walls are integral structures at the typical offshore topside module to provide safety barriers for personnel and critical equipment against any blast loading and hydrocarbon explosions. The blast wall structures are usually configured with stainless steel. It can be referred as the good mechanical properties of the stainless steel against blast load, which features the characteristics of significant energy absorption and ductility. In this study, the proposed designs of corrugated panel are examined in order to determine the best design which satisfies the design criteria. The criteria on maximum deflection and stress are used to decide the best design. The effect of inclined angle of profile on deformation characteristics of blast wall is also performed. The numerical study was performed by using NX Nastran 7.5.