• 제목/요약/키워드: Quasi-static Analysis

검색결과 410건 처리시간 0.023초

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

철근콘크리트 교각의 연성도 평가를 위한 비선형해석 (Nonlinear Analysis of RC Bridge Columns for Ductility Evaluation)

  • 손혁수;이재훈
    • 한국지진공학회논문집
    • /
    • 제7권4호
    • /
    • pp.39-49
    • /
    • 2003
  • 본 연구는 철근콘크리트 교각에 대한 새로운 내진설계법을 개발하기 위한 연구의 일환으로서, 축력과 함께 반복 횡하중을 받는 철근콘크리트 교각의 모멘트-곡률 포락곡선 및 하중-변위 포락곡선을 얻기 위한 비선형 해석방법을 제시한다. 철근콘크리트 교각의 내진성능에 영향을 미치는 주요변수들에 대한 기존의 해석모델을 적용하였으며, 국내ㆍ외에서 수행된 나선철근 및 원형띠철근 기둥의 준정적 실험결과와의 비교 분석을 통하여 실험결과와 유사한 해석결과를 제공할 수 있도록 기존의 해석모델을 일부 수정 제안하였다. 해석에는 횡방향 구속효과를 고려한 콘크리트 모델, 반복하중을 받는 철근의 포락선 모델, 축방향철근의 부착슬립 모델, 전단변형 모델 등을 적용하였다. 제안된 해석방법은 실험결과를 비교적 잘 예측할 수 있는 것으로 평가되며, 특히 변형능력 및 연성도에 대하여는 실험결과에 비하여 안전측의 결과를 제공한다.

개별요소해석에서 절리강성이 블록 거동에 미치는 영향 (Effect of Joint Stiffness on the Rock Block Behavior in the Distinct Element Analysis)

  • 류창하;최병희
    • 화약ㆍ발파
    • /
    • 제37권2호
    • /
    • pp.14-21
    • /
    • 2019
  • 개별요소법은 절리가 발달한 불연속 암반의 모델링에 매우 유력한 수치해석적 방법이다. 또한 발파 후 큰 변위가 일어나는 단계에서의 모델링에도 효과적이다. 개별요소법에서 각 요소는 강체로 가정하고, 요소 간 약간의 중첩을 허용하여 접촉 변위로부터 상호 작용력을 계산한다. 개별요소의 경계로 정의되는 절리의 강성은 블록요소 상호 간의 거동을 결정하는 중요한 변수로서 변형의 크기와 파괴 양상에 영향을 준다. 그러나 요소 간 과도한 중첩으로 인한 수치해석적 불안정성을 방지하기 위해서 어떤 준정적인 문제에 있어서는 실제 절리 물성과 관계없이 임의로 선정된 절리 강성 값이 사용되기도 한다. 해석의 주된 관심사가 정밀도 높은 변형의 크기 예측이냐, 불연속체의 파괴 양상이나 파괴 후 파괴된 블록들의 거동 예측이냐에 따라, 절리 강성에 대한 입력 자료 값은 결과에 큰 영향을 주지 않을 수도 있고, 심각한 예측 오류를 가져올 수도 있다. 본 연구는 개별요소법을 이용한 수치해석 모델링에서 절리 강성 값이 해석 결과에 미치는 영향을 이해하고 입력자료 선정 지침에 도움을 주고자 수행되었다.

비선형 유한요소해석을 이용한 조립식 교각의 성능 평가 (Evaluation of Structural Performance of Precast Prefabricated Bridge Column using Nonlinear Finite Element Analysis)

  • 정철헌;윤연석;황은정
    • 대한토목학회논문집
    • /
    • 제28권3A호
    • /
    • pp.383-390
    • /
    • 2008
  • 교량의 하부구조에 프리캐스트 공법을 적용하기 위해 제안된 조립식 교각은 강관과 강봉을 연결구조로 활용하였으며, 강봉에 긴장력을 도입하여 교각의 일체화를 도모하였다. 제안된 조립식 교각 시스템을 적용하여 교각 실험체를 제작하였으며, 준정적 실험을 수행하였다. 실험결과, 교각 실험체의 파괴모드는 휨파괴로 나타났으며, 이음부에서의 손상은 발생하지 않았다. 또한 강봉에 도입된 긴장력으로 변형에 대한 복원능력이 우수하며, 교각의 연성능력이 내진설계기준을 만족하는 것을 확인하였다. 실험체를 대상으로 비선형 유한요소해석을 수행하였으며, 해석기법의 타당성을 검증하였다. 조립식 교각의 하중-변위 관계와 균열발생 위치에 대한 해석결과가 실험결과와 일치함을 확인함으로서 해석방법의 타당성을 확인하였다. 조립식 교각의 강재비, 강봉에 도입되는 긴장력, 콘크리트의 강도를 변수로 하여 비선형유한요소해석을 수행하였다. 해석결과를 통하여 제안된 조립식 교각 시스템의 적절한 수준의 강재비와 강봉에 도입되는 긴장력 등을 정성적으로 평가하였다.

시트 동특성을 고려한 인체 진동 해석 (Human Body Vibration Analysis under Consideration of Seat Dynamic Characteristics)

  • 강주석
    • 한국산학기술학회논문지
    • /
    • 제13권12호
    • /
    • pp.5689-5695
    • /
    • 2012
  • 본 연구에서는 차량에 적용되는 시트 재질인 폴리우레탄 폼의 점탄성 특성을 고려하여 시트와 인체의 진동특성을 시험 및 수치해석 방법을 이용하여 분석하였다. 압축 시험을 통해 폴리우레탄 폼의 점탄성 특성인 비선형성과 준-정역학적 특성을 구하였다. 또한 컨벌루션 적분법 및 비선형 강성 모델을 이용하여 폴리우레탄 폼의 점탄성 특성을 수학적으로 모델링하였다. 시트의 승차감 기여도를 분석하기 위하여 시트의 동역학 모델과 ISO5982의 표준 인체 수직진동 모델을 이용하여 수직 진동모델을 구성하고 관련 운동방정식을 유도하였다. 비선형 운동방정식은 Runge-Kutta 적분법을 이용하여 수치해석 시뮬레이션을 수행하였다. 철도차량의 차체 바닥에서 측정한 진동가속도 입력에 대한 시트와 인체의 응답 특성을 분석하고 시트 설계 파라미터에 대한 승차감 지수 값들의 변화를 분석하여 시트 설계에 대한 방법론을 제시하고자 한다.

이동열차하중에 대한 강봉으로 보강된 프리캐스트 프리스트레스트 옹벽의 동적 안정성 평가 (Evaluation of Dynamic Stability for Structural Bar Reinforced Precast and Prestressed Retaining Wall for Moving Train Load)

  • 이일화;엄주환;이강명;금창준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제15권5호
    • /
    • pp.190-198
    • /
    • 2011
  • 프리캐스트 콘크리트제품은 빠른 시공, 노동력 절감, 높은 품질확보의 장점을 가지고 있어 옹벽구조물 분야에도 많이 적용하고 있다. 본 논문에서는 철도에 적용되는 프리캐스트 프리스트레스트로 제작된 옹벽의 동적안정성을 평가하기 위하여 이동열차 하중 재하상태에서의 수치해석을 수행하였다. 해석에는 2차원 유한요소 해석이 적용되었다. 궤도에 작용하는 이동열차하중은 이동하중에 대한 충격력을 대표하는 조도성분의 위상각 자료와 열차자중을 대표하는 준정적 하중을 조합하여 사용하였다. 해석에는 노반과 옹벽구조물의 시간영역 변위, 응력, 가속도 결과값을 이용하여 옹벽의 동적안정성을 평가하였으며, 평가결과 충분한 적용성을 확인하였다.

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

Force-based seismic design of steel haunch retrofit for RC frames

  • Ahmad, Naveed
    • Earthquakes and Structures
    • /
    • 제20권2호
    • /
    • pp.133-148
    • /
    • 2021
  • The paper presents a simplified force-based seismic design procedure for the preliminary design of steel haunch retrofitting for the seismic upgrade of deficient RC frames. The procedure involved constructing a site-specific seismic design spectrum for the site, which is transformed into seismic base shear coefficient demand, using an applicable response modification factor, that defines base shear force for seismic analysis of the structure. Recent experimental campaign; involving shake table testing of ten (10), and quasi-static cyclic testing of two (02), 1:3 reduced scale RC frame models, carried out for the seismic performance assessment of both deficient and retrofitted structures has provided the basis to calculate retrofit-specific response modification factor Rretrofitted. The haunch retrofitting technique enhanced the structural stiffness, strength, and ductility, hence, increased the structural response modification factor, which is mainly dependent on the applied retrofit scheme. An additional retrofit effectiveness factor (ΩR) is proposed for the deficient structure's response modification factor Rdeficient, representing the retrofit effectiveness (ΩR=Rretrofitted /Rdeficient), to calculate components' moment and shear demands for the retrofitted structure. The experimental campaign revealed that regardless of the deficient structures' characteristics, the ΩR factor remains fairly the unchanged, which is encouraging to generalize the design procedure. Haunch configuration is finalized that avoid brittle hinging of beam-column joints and ensure ductile beam yielding. Example case study for the seismic retrofit designs of RC frames are presented, which were validated through equivalent lateral load analysis using elastic model and response history analysis of finite-element based inelastic model, showing reasonable performance of the proposed design procedure. The proposed design has the advantage to provide a seismic zone-specific design solution, and also, to suggest if any additional measure is required to enhance the strength/deformability of beams and columns.

철근 콘크리트 전단벽에서 면외 하중이 면내 전단성능에 미치는 영향 (The Effect of Out-of-Plane Load on the In-Plane Shear Capacity of Reinforcement Concrete Shear Wall)

  • 신혜민;박준희
    • 한국지진공학회논문집
    • /
    • 제28권2호
    • /
    • pp.77-83
    • /
    • 2024
  • The design shear strength equations of RC shear walls have been developed based on their performance under in-plane (IP) loads, thereby failing to account for the potential performance degradation of shear strength when subjected to simultaneous out-of-plane (OOP) loading. Most of the previous experimental studies on RC walls have been conducted in one direction under quasi-static conditions, and due to the difficulty in experimental planning, there is a lack of research on cyclic loading and results under multi-axial loading conditions. During an earthquake, shear walls may yield earlier than their design strength or fail unexpectedly when subjected to multi-directional forces, deviating from their intended failure mode. In this paper, nonlinear analysis in finite element models was performed based on the results of cyclic loading experiments on reinforced concrete shear walls of auxiliary buildings. To investigate the reduction trend in IP shear capacity concerning the OOP load ratio, parametric analysis was conducted using the shear wall FEM. The analysis results showed that as the magnitude of the OOP load increased, the IP strength decreased, with a more significant effect observed as the size of the opening increased. Thus, the necessity to incorporate this strength reduction as a factor for the OOP load effect in the wall design strength equation should be discussed by performing various parametric studies.

Influence of loading rate on flexural performance and acoustic emission characteristics of Ultra High Performance Concrete

  • Prabhat Ranjan Prem;Vignesh Kumar Ramamurthy;Vaibhav Vinod Ingle;Darssni Ravichandran;Greeshma Giridhar
    • Structural Engineering and Mechanics
    • /
    • 제89권6호
    • /
    • pp.617-626
    • /
    • 2024
  • The study investigated the behavior of plain and fibered Ultra-High Performance Concrete (UHPC) beams under varying loading conditions using integrated analysis of the flexure and acoustic emission tests. The loading rate of testing is -0.25 -2 mm/min. It is observed that on increasing loading rate, flexural strength increases, and toughness decreases. The acoustic emission testing revealed that higher loading rates accelerate crack propagation. Fiber effect and matrix cracking are identified as significant contributors to the release of acoustic emission energy, with fiber rupture/failure and matrix cracking showing rate-dependent behavior. Crack classification analysis indicated that the rise angle (RA) value decreased under quasi-static loading. The average frequency (AF) value increased with the loading rate, but this trend reversed under rate-dependent conditions. K-means analysis identified distinct clusters of crack types with unique frequency and duration characteristics at different loading rates. Furthermore, the historic index and signal strength decreased with increasing loading rate after peak capacity, while the severity index increased in the post-peak zone, indicating more severe damage. The sudden rise in the historic index and cumulative signal strength indicates the possibility of several occurrences, such as the emergence of a significant crack, shifts in cracking modes, abrupt failure, or notable fiber debonding/pull-out. Moreover, there is a distinct rise in the number of AE knees corresponding to the increase in loading rate. The crack mapping from acoustic emission testing aligned with observed failure patterns, validating its use in structural health monitoring.