• Title/Summary/Keyword: Quasi-resonant dc-link (QRDCL)

Search Result 2, Processing Time 0.018 seconds

A Simple Resonant DC Link Snubber-Assisted Bi-directional Three-phase PWM Converter for Battery Energy Storage Systems

  • Hiraki, Eiji;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.133-139
    • /
    • 2002
  • In this paper, a prototype of an active auxiliary quasi-resonant DC link (QRDCL) snubber assisted voltage source bidirectional power converter (AC to DC and DC to AC) operating at zero voltage soft-switching (BVS) PWM nlode is presented for a Battery Energy Storage System (BESS). The operating principle of this QRDCL circuit and multifunctional control-based converter system, including PWM inverter mode in which energy flows from the battery bank to the three-phase utility-grid in addition to an active PWM converter mode in which energy flows from the utility-grid to the battery banks are described respectively by the control implementation on the basis of d-q coordinate plane transformation. The multifunctional operation characteristics of this three-phase ZVS PWM bi-directional converter with QRDCL is demonstrated fer a BESS under the power conditioning and processing schemes of energy supply mode and energy storage mode, and compared with a conventional three-phase hard switching PWM bi-directional converter for a BESS. The effectiveness of the three-phase ZVS PWM hi-directional converter with QRDCL is proven via the simulation analysis.

Quasi Resonant DC Link Inverter with a Simple Auxiliary Circuit

  • Amini, Mohammad Reza;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 2011
  • In this paper, a new soft switching three phase inverter with a quasi-resonant dc-link is presented. The proposed inverter has a dc-link switch and an auxiliary switch. The inverter switches are turned on and off under zero voltage switching condition and all auxiliary circuit switches and diodes are also soft switched. The control utilizes PWM and the auxiliary switch does not require an isolated gate drive circuit. In this paper, the operation analysis and design considerations of the proposed soft switching inverter are discussed. The presented experimental results of a realized prototype confirm the theoretical analysis.