• Title/Summary/Keyword: Quasi-orthogonal code

Search Result 36, Processing Time 0.026 seconds

Performance Analysis for The Coordinate Interleaved Orthogonal Design of Space Time Block Code in The Time Selective Fading Channel (시간 선택적 페이딩 환경에서 CIOD 시공간 블록 부호의 성능 분석)

  • Moon, Seung-Hyun;Lee, Ho-Kyoung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.43-49
    • /
    • 2014
  • In this paper, we consider the performance evaluation of space time block code (STBC)) with coordinate interleaved orthogonal design (CIOD) over time selective channel. In case of quasi static channel, STBC-CIOD satisfies full rate and full diversity (FRFD) property with the single symbol decoding. However in the time selective channel, the symbol interference degrades the system performance when we employ the single symbol decoding. We derive the union bound of the symbol error probability by evaluating the pairwise error probability in the first order Markov channel. We also present simulation results of STBC-CIOD with QPSK.

Interference Cancellation for QO-STBC with EVD (EVD기법을 이용한 QO-STBC의 간섭 제거)

  • Kim, Dong Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.46-52
    • /
    • 2016
  • Quasi-Orthogonal STBC (QO-STBC) scheme is proposed conventionally achieving approximate full rate and full diversity in more than 3 transmit antenna and open-loop environmen.. But, conventional QO-STBC has disadvantage that performance degradation by interference terms of detection matrix and high decoding complexity. Recently, this interference cancellation scheme of low decoding complexity by multiplying specific rotation matrix is proposed. We propose more general interference cancellation scheme by using EVD(Eigenvalue Decompostion).

Closed Loop Quasi- Orthogonal ST8C with Antenna Selective Feedback (안테나 선택적 Feedback을 갖는 폐루프 준직교 STBC)

  • 김민수;김용석;황금찬
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04a
    • /
    • pp.511-513
    • /
    • 2004
  • IMT-2000 시스템에서 직교 STBC (Space-Time Block Code)와 같은 송신 다이버시티(diversity) 기법은 순방향 링크용량을 향상시킬 수 있다. 그러나 완벽한 다이버시티 (full diversity) 이득과 코드율 1 (full code rate)을 갖는 직교 STBC는 송신안테나 개수가 2개일 경우만 존재한다. 이 논문에서는 4개의 송신안테나와 1개의 수신안테나를 갖는 시스템에서 코드율 1 을 갖는 준직교 STBC를 사용할 경우 안테나 선택적 feedback 정보를 이용하여 완벽한 다이버시티 이득을 얻는 동시에 feedback 정보량은 줄일 수 있음을 보여 준다.

  • PDF

Full-Diversity High-Rate STBC for 2 and 4 Transmitted Antennas (2,4개 전송 안테나를 위한 완전 다이버시티 고 부호율 STBC)

  • Yan, Yier;Lee, Moon-Ho;Ma, Yizhou
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.295-297
    • /
    • 2007
  • We design a new rate-3/2 full-diversity orthogonal space-time block code (STBC) for QPSK and 2 transmit antennas (TX) and 4 transmit antennas (TX) by enlarging the signalling set from the set of quaternions used in the Alamouti[I] and extendedcode and using additional members of the set of orthogonal matrices or Quasi-orthogonal matrices and higher than rate-5/4. Selective power scaling of information symbols is used to guarantee full-diversity while maximizing the coding gain (CG) and minimizing the transmitted signal peak-to-minimum power ratio (PMPR). The optimum power scaling factor is derived analytically and shown to outpetform schemes based only on constellation rotation while still enjoying a low-complexity maximum likelihood (ML) decoding algorithm.

  • PDF

Cooperative Diversity MIMO System for m with 8 Transmit Antennas (8개 송신 안테나 UWB를 위한 협동 다이버시티 MIMO 시스템)

  • Lee Kwang-Jae;Hou Jia;Lee Moon-Ho;Cho Sam-Goo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.7 s.98
    • /
    • pp.709-719
    • /
    • 2005
  • The forward link of the 3 G CDMA system may become limited under the increasing of the number of users. The conventional channelization code, Walsh code, has not enough sizes for much possible non, therefore, the quasi orthogonal function(QOF), which process optimal cross-correlation with Walsh code, is considered. In this paper, we investigate quasi orthogonal function on Jacket matrices, which can lead lower correlations values and better performance in 3 G CDMA system. Moreover, to simple the detector and improve the BER performance, a novel detection for QOF CDMA system is proposed. Finally, the simple recursive generation of the bent sequences for QOF mask function is discussed.

Adaptive Channel-Matched Extended Alamouti Space-Time Code Exploiting Partial Feedback

  • Badic, Biljana;Rupp, Markus;Weinrichter, Hans
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.443-451
    • /
    • 2004
  • Since the publication of Alamouti's famous space-time block code, various quasi-orthogonal space-time block codes (QSTBC) for multi-input multi-output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2$^n$ (n=3, 4, ${\cdots}$) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum-likelihood receiver or low-complexity zero-forcing receiver.

  • PDF

Unsteady wind loading on a wall

  • Baker, C.J.
    • Wind and Structures
    • /
    • v.4 no.5
    • /
    • pp.413-440
    • /
    • 2001
  • This paper presents an extensive analysis of unsteady wind loading data on a 18 m long and 2 m high wall in a rural environment, with the wind at a range of angles to the wall normal. The data is firstly analyzed using standard statistical techniques (moments of probability distributions, auto- and cross-correlations, auto- and cross-spectra etc.). The analysis is taken further using a variety of less conventional methods - conditional sampling, proper orthogonal decomposition and wavelet analysis. It is shown that, even though the geometry is simple, the nature of the unsteady flow is surprisingly complex. The fluctuating pressures on the front face of the wall are to a great extent caused by the turbulent fluctuations in the upstream flow, and reflect the oncoming flow structures. The results further suggest that there are distinct structures in the oncoming flow with a variety of scales, and that the second order quasi-steady approach can predict the pressure fluctuations quite well. The fluctuating pressures on the rear face are also influenced by the fluctuations in the oncoming turbulence, but also by unsteady fluctuations due to wake unsteadiness. These fluctuations have a greater temporal and spatial coherence than on the front face and the quasi-steady method over-predicts the extent of these fluctuations. Finally the results are used to check some assumptions made in the current UK wind loading code of practice.

Performance Analysis of Quasi-orthogonal STC Using Adaptive Power Allocation Scheme (적응된 전력 할당 기법을 이용한 준직교코드의 성능 분석)

  • Kim Young-Hwan;Kim Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.1A
    • /
    • pp.72-78
    • /
    • 2006
  • It is impossible to provide full diversity and full rate simultaneously using more than two transmit antennas in transmit diversity system. To do this, simple interference cancellation scheme and transmit power allocation scheme have been proposed, recently. But the former has increased noise power and the latter has increased interference which is induced by other channel in fading channel. In this paper, we propose an adaptive transmit power allocation algorithm to minimize the estimation error in the channel environments which have different fading levels each other and to improve the system performance.

Joint Space-time Coding and Power Domain Non-orthogonal Multiple Access for Future Wireless System

  • Xu, Jin;Ding, Hanqing;Yu, Zeqi;Zhang, Zhe;Liu, Weihua;Chen, Xueyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.93-113
    • /
    • 2020
  • According to information theory, non-orthogonal transmission can achieve the multiple-user channel capacity with an onion-peeling like successive interference cancellation (SIC) based detection followed by a capacity approaching channel code. However, in multiple antenna system, due to the unideal characteristic of the SIC detector, the residual interference propagated to the next detection stage will significantly degrade the detection performance of spatial data layers. To overcome this problem, we proposed a modified power-domain non-orthogonal multiple access (P-NOMA) scheme joint designed with space-time coding for multiple input multiple output (MIMO) NOMA system. First, with proper power allocation for each user, inter-user signals can be separated from each other for NOMA detection. Second, a well-designed quasi-orthogonal space-time block code (QO-STBC) was employed to facilitate the SIC-based MIMO detection of spatial data layers within each user. Last, we proposed an optimization algorithm to assign channel coding rates to balance the bit error rate (BER) performance of those spatial data layers for each user. Link-level performance simulation results demonstrate that the proposed time-space-power domain joint transmission scheme performs better than the traditional P-NOMA scheme. Furthermore, the proposed algorithm is of low complexity and easy to implement.

8 Antenna Interleaved Quasi Orthogonal Space Time Block Code TBH with PIC Group Decoding (8 안테나 인터리브 시스템을 위한 준직교 시공간 블록 부호 TBH의 부분 간섭 제거 그룹 복호 알고리즘)

  • Lee, Moon-Ho;Lee, Mi-Sung;Hanif, Mohammad Abu;Park, Ju-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.8
    • /
    • pp.7-14
    • /
    • 2011
  • In this paper we studied a conventional system and propose a new decoding scheme for Space-time Frequency Code with Interleaved System. We also addressed the quasi orthogonal function with Jacket matrices in modern 3GPP LTE uplinked advance system. We also introduce the Partial Interference Cancellation (PIC) group decoding which provides a framework to adjust the complexity-performance tradeoff by choosing the sizes of the information symbols groups.