• Title/Summary/Keyword: Quasi-isotropic

Search Result 102, Processing Time 0.016 seconds

Experimental and numerical investigation on low-velocity impact behaviour of thin hybrid carbon/aramid composite

  • Sojan Andrews Zachariah;Dayananda Pai K;Padmaraj N H;Satish Shenoy Baloor
    • Advances in materials Research
    • /
    • v.13 no.5
    • /
    • pp.391-416
    • /
    • 2024
  • Hybrid composite materials are widely used in various load-bearing structural components of micro - mini UAVs. However, the design of thin laminates for better impact resistance remains a challenge, despite the strong demand for lightweight structures. This work aims to assess the low-velocity impact (LVI) behaviour of thin quasi-isotropic woven carbon/ aramid epoxy hybrid laminates using experimental and numerical techniques. Drop tower impact test with 10 J and 15 J impact energies is performed on carbon/epoxy laminates having aramid layers at different sequences and locations. The impact behaviour is experimentally evaluated using force-time, force-deformation, and energy-time histories considering delamination threshold load, peak load, and laminate deflection. Ultrasonic C-scan is performed on the post-impact samples to analyse the insidious damage profile at different impact energies. The experimental data is further utilized to numerically simulate LVI behaviour by employing the representative volume element model. The numerical results are in good agreement with the experimental data. Numerical and experimental approach predicts that the hybrid laminates with aramid layers at both impact and non-impact sides of the laminate exhibits significant improvement in the overall impact behaviour by having a subcritical damage morphology compared to carbon/epoxy laminate. A combined numerical-experimental approach is proposed for evaluating the effective impact performance.

Self-Diagnosis of Damage in Carbon Fiber Reinforced Composites Using Electrical Residual Resistance Measurement (잉여 전기 저항 측정을 이용한 탄소 섬유 강화 복합재의 파손 측정)

  • Kang, Ji-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.323-330
    • /
    • 2009
  • The objective of this research was to develop a practical integrated approach using extracted features from electrical resistance measurements and coupled electromechanical models of damage, for in-situ damage detection and sensing in carbon fiber reinforced plastic(CFRP) composites. To achieve this objective, we introduced specific known damage (in terms of type, size, and location) into CFRP laminates and established quantitative relationships with the electrical resistance measurements. For processing of numerous measurement data, an autonomous data acquisition system was devised. We also established a specimen preparation procedure and a method for electrode setup. Coupon and panel CFRP laminate specimens with several known damage were tested. Coupon specimens with various sizes of artificial delaminations obtained by inserting Teflon film were manufactured and the resistance was measured. The measurement results showed that increase of delamination size led to increase of resistance implying that it is possible to sense the existence and size of delamination. A quasi-isotropic panel was manufactured and electrical resistance was measured. Then three different sizes of holes were drilled at a chosen location. The panel was prepared using the established procedures with six electrode connections on each side making a total of twenty-four electrodes. Vertical, horizontal, and diagonal pairs of electrodes were chosen and the resistance was measured. The measurement results showed the possibility of the established measurement system for an in-situ damage detection method for CFRP composite structures.