• 제목/요약/키워드: Quasi-conformation therapy

검색결과 2건 처리시간 0.015초

Quasi-Conformation 치료를 위한 새로운 방사선치료기술의 개발 (Development of a New Radiotherapy Technique using the Quasi-Conformation Method)

  • 최태진;김진희;김옥배
    • Radiation Oncology Journal
    • /
    • 제9권2호
    • /
    • pp.343-350
    • /
    • 1991
  • 종양모양에 거의 일치하는 선량분포를 얻기위해 다층부정형필터를 이용하는 방법을 보였으며, 필터의 재질은 Lipowitz (일명 cerrobend alloy) 금속체를 이용하였다. 선속내 필터의 놓임은 일차선의 감쇄와 함께 조직내 산란선 기여율의 변화가 예상되므로 필터의 두께에 따른 SMR의 변화가 계산에 이용되어야 된다. 이에 본 연구의 계산선량은 실측치의 $3\%$이내에서 잘 일치됨을 알 수 있었다. 다층부정형필터를 이용한 펜톰의 원호조사의 선량평 가는 동일 필터에 의한 고정조사의 선량분포가 적용되었으며, 가상종양에 거의 일치하는 선량분포를 얻을수 있었다. 한편, 컴퓨터모의계산된 선량과 열발광산량계(teflon-embedded TLD)의 실측선량은 비교적${\pm}5\%$ 범위내에서 잘 일치됨을 알 수 있었으며, 이 치료방법은 현재 차폐체로 많이 이용되고 있는 Lipowitz 금속체를 사용함으로써 보다 쉽게 응용되어질 것으로 생각된다.

  • PDF

Reduction of Patient Dose in Radiation Therapy for the Brain Tumors by Using 2-Dimensional Vertex or Oblique Vertex Beam Technique

  • Kim, Il-Han;Chie, Eui-Kyu;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • 제28권3호
    • /
    • pp.225-231
    • /
    • 2003
  • Up-front irradiation technique as 3-dimensional conformation, or intensity modulation has kept large proportion of brain tumors from being complicated with acute radiation reactions in the normal tissue during or shortly after radiotherapy. For years, we've cannot help but counting on 2-D vertex beam technique to reduce acute reactions in the brain tumor patients because we're not equipped with 3-dimensional planning system. We analyzed its advantages and limitations in the clinical application. From 1998 to 2001, vertex or oblique vertex beams were applied to 35 patients with primary brain tumor and 25 among them were eligible for this analysis. Vertex(V) plans were optimized on the reconstructed coronal planes. As the control, we took the bilateral opposed techniques(BL) otherwise being applied. We compared the volumes included in 105% to 50% isodose lines of each plan. We also measured the radiation dose at various extracranial sites with TLD. With vertex techniques, we reduced the irradiated volumes of contralateral hemisphere and prevented middle ear effusion at contralateral side. But the low dose volume increased outside 100%; the ratio of V to BL in irradiated volume included in 100%, 80%, 50% was 0.55+/-0.10, 0.61+/-0.10, and 1.22+/-0.21, respectively. The hot area within 100% isodose line almost disappeared with vertex plan; the ratio of V to BL in irradiated volume included in 103%, 105%, 108% was 0.14+/-0.14, 0.05./-0.17, 0.00, respectively. The dose distribution within 100% isodose line became more homogeneous; the ratio of volume included in 103% and 105% to 100% was 0.62+/-0.14 and 0.26+/-0.16 in BL whereas was 0.16+/-0.16 and 0.02+/-0.04 in V. With the vertex techniques, extracranial dose increased up to $1{\sim}3%$ of maximum dose in the head and neck region except submandibular area where dose ranged 1 to 21%. From this data, vertex beam technique was quite effective in reduction of unnecessary irradiation to the contralateral hemispheres, integral dose, obtaining dose homogeneity in the clinical target. But it was associated with volume increment of low dose area in the brain and irradiation toward the head and neck region otherwise being not irradiated at all. Thus, this 2-D vertex technique can be a useful quasi-conformal method before getting 3-D apparatus.