• Title/Summary/Keyword: Quasi-Yagi Antenna

Search Result 34, Processing Time 0.031 seconds

Study on a broadband quasi-Yagi antenna for mobile base station (이동통신 기지국용 광대역 quasi-Yagi 안테나에 관한 연구)

  • Lee, Jong-Ig;Yeo, Jun-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4165-4170
    • /
    • 2012
  • In this paper, a method for the improvement in the gain and bandwidth of a microstrip-fed broadband planar quasi-Yagi antenna (QYA) is studied. The broadband characteristics of the QYA are achieved from the coplanar strip-fed planar dipole driver and a parasitic director close to the driver. In order to obtain stable gain variation over the required frequency band, a director and a ground reflector are appended to the driver having a nearby parasitic director. The QYA is fed through an integrated balun composed of a microstrip line and a slot line which are terminated in a short circuit. By adjusting the feeding point, a broadband impedance matching is obtained. A QYA with an operating frequency band of 1.75-2.7 GHz and a gain > 4.5 dBi is designed and fabricated on an FR4 substrate with dielectric constant of 4.4 and thickness of 1.6mm. The experimental results show that the fabricated antenna has good performance such as a broad bandwidth of 59.7%(1.55-2.87 GHz), a stable gain between 4.7-6.5 dBi, and a front-to-back ratio > 10 dB. The measured data agree well with the simulation, which validates this study.

Design of a compact coplanar waveguide-fed 2-element quasi-Yagi antenna (코플래너 도파관으로 급전되는 소형 2-소자 준-야기 안테나 설계)

  • Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.12
    • /
    • pp.2199-2205
    • /
    • 2016
  • In this paper, a design method for a coplanar waveguide (CPW)-fed 2-element quasi-Yagi antenna (QYA) is studied. A balun between CPW and coplanar strip (CPS) which feeds a planar dipole is implemented by connecting the one end of ground strips in a CPW to a signal strip. The antenna size is reduced by bent strip dipole and reflector, and an integrated balun. The proposed antenna was designed for the operation in a UHF radio frequency identification (RFID) band of 902-928 MHz, and the effects of various parameters such as dipole length, reflector length, distance between dipole and reflector, feed position were examined. The antenna with a size of $90mm{\times}80mm$ was fabricated on an FR4 substrate, and the experiment results reveal a frequency band of 885-942 MHz for a voltage standing wave ratio < 2, a gain > 4.3 dBi, and a front-to-back ratio > 7 dB over the frequency band for the UHF RFID.

Design of a Broadband Quasi-Yagi Antenna for UHF Band (UHF 대역 광대역 준-야기 안테나 설계)

  • Yang, Myung-Gyu;Lee, Yun-Joo;Kwon, Jun-Hyoek;Lee, Chang-Kyun;Lee, Jong-Ig;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.939-940
    • /
    • 2015
  • In this paper, a design method for a quasi-Yagi antenna (QYA) suitable for UHF band is studied. Due to the mutual coupling between a coplanar strip (CPS)-fed planar dipole and a conducting strip director placed close to the dipole, the dipole obtains broadband characteristics. A ground reflector improves gain in the lower frequency band, and the antenna size might be reduced by employing a bent reflector. The balun between the CPS line and the microstrip(MS) line is constructed by connecting the end of MS line and the CPS line through a shorting pin. In addition, a ring-type conductor connects the CPS line and reflector. The effects of various geometrical parameters and balun on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV.

  • PDF

High-Efficiency, High-Gain, Broadband Quasi-Yagi Antenna and Its Array for 60-GHz Wireless Communications

  • Ta, Son Xuat;Kang, Sang-Gu;Han, Jea Jin;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.3
    • /
    • pp.178-185
    • /
    • 2013
  • This paper introduces a high-efficiency, high-gain, broadband quasi-Yagi antenna, and its four-element array for use in 60-GHz wireless communications. The antenna was fed by a microstrip-to-slotline transition consisting of a curved microstripline and a circular slot to allow broadband characteristics. A corrugated ground plane was employed as a reflector to improve the gains in the low-frequency region of the operation bandwidth, and consequently, to reduce variation. The single antenna yielded an impedance bandwidth of 49 to 69 GHz for $|S_{11}|$ <-10dB and a gain of >12.0 dBi while the array exhibited a bandwidth of 52 to 68 GHz and a gain greater than 15.0 dBi. Both proposed designs had small gain variations (${\pm}0.5$ dBi) and high radiation efficiency (>95%) in the 60-GHz bands. The features of the proposed antenna were validated by designing, fabricating, and testing a scaled-up configuration of the single antenna at the 15-GHz band. The measurements resulted in an impedance bandwidth of 13.0 to 17.5 GHz for $|S_{11}|$ <-10dB, a gain of 10.1 to 13.2 dBi, and radiation efficiency in excess of 88% within this bandwidth. Additionally, the 15-GHz antenna yielded quite symmetric radiation profiles in both E- and H-planes, with a high front-to-back ratio.

Design of a CPW-fed Double-Dipole Quasi-Yagi Antenna (CPW 급전 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.11
    • /
    • pp.1518-1523
    • /
    • 2018
  • A method for designing a DDQYA fed by a CPW is proposed in this paper. The proposed CPW-fed DDQYA consists of two series-connected strip dipoles, a ground reflector, and a strip-pair director. Instead of the conventional microstrip feed line in which the signal line is located on the substrate opposite to the antenna, a CPW is used because CPW is located on the same side with the antenna, and so the fabrication is easy. The strip-pair director is composed of two horizontally-separated strips, and it is added above the second dipole to enhance the gain in the high frequency region. A prototype of the proposed CPW-fed DDQYA is fabricated on an FR4 substrate. The fabricated antenna has a frequency band of 1.66-3.38 GHz(68.3%) for a voltage standing wave ratio < 2, and measured gain ranges 5.0-7.3 dBi over a frequency band of 1.60-2.90 GHz.

Wideband Double Dipole Quasi-Yagi Antenna Using a Microstrip-to-Slotline Transition Feed

  • Ta, Son Xuat;Park, Ikmo
    • Journal of electromagnetic engineering and science
    • /
    • v.13 no.1
    • /
    • pp.22-27
    • /
    • 2013
  • This paper describes a wideband double dipole quasi-Yagi antenna fed by a microstrip-to-slotline transition. The transition feed consists of a microstrip radial stub and a slot radial stub, each with the same angle of $90^{\circ}$ but with different radii, to achieve wideband impedance matching. Double dipoles with different lengths are utilized as primary radiation elements to enhance bandwidth and achieve stable radiation patterns. The proposed antenna has a measured bandwidth of 3.34~8.72 GHz for a -10 dB reflection coefficient and a flat gain of $6.9{\pm}0.6$ dBi across the bandwidth.

Design of Compact Planar Quasi-Yagi Antenna for DTV Reception (디지털방송 수신용 평면 준-야기 안테나의 소형화 설계)

  • Lee, Jong-Ig;Han, Dae-Hee;Kim, Soo-Min;Kim, Gun-Kyun;Yeo, Junho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.583-585
    • /
    • 2012
  • In this paper, we introduce a design method for a broadband planar quasi-Yagi antenna (QYA) for terrestrial digital television (DTV) receiving. The coplanar strip line feeding the driver dipole is connected to a microstrip line and is terminated by short circuit. By appending a wide strip-type director at a location close to the driver dipole, a broadband impedance matching and a gain characteristics in a high frequency region are obtained. The gain characteristics in a low frequency region are improved by adding a reflector formed by a truncated ground plane. To reduce the antenna size, the strip-type dipole and reflector are modified to half bowtie (V)-shaped elements. The effects of various parameters on the antenna characteristics are examined. An antenna, as an design example for the proposed antenna, is designed for the operation in the frequency band of 470-806 MHz for terrestrial DTV. The optimized antenna is fabricated on an FR4 substrate and tested experimentally to verify the results of this study.

  • PDF

Quasi-Yagi Antenna for Surveillance Sensor (무인 경계용 레이더 센서를 위한 의사 야기 안테나)

  • Im, Tae-Bin;Kim, Kan-Wook;Cho, Jung-Sam;Kang, Tae-In;Lee, No-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4515-4521
    • /
    • 2010
  • A Yagi antenna, which is a typical directional antenna, has been designed and fabricated as a surveillance sensor. The proposed Yagi antenna satisfies the requirements as a surveillance sensor; impedance bandwidth of 7.2-8.2GHz, maximum gain of 7dBi, and 3dB beamwidth of $60^{\circ}$ in the azimuthal plane. The proposed Yagi antenna is designed with 3 directors and one driven element on a dielectric substrate. Also, a microstrip-to-CPS balun is designed and applied to the proposed antenna for balanced feeding of the dirven element. The performance of the proposed antenna has been verified by comparing the simulation and measurement results.

Design of Compact and Broadband Quasi-Yagi Antenna Using Balance Analysis of the Balun (발룬의 평형도 해석을 이용한 소형화된 광대역 Quasi-Yagi 안테나 설계)

  • Woo, Dong Sik;Kim, In-Bok;Kim, Young-Gon;Kim, Kang Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.27-35
    • /
    • 2013
  • In this paper, a compact, broadband quasi-Yagi antenna utilizing balance analysis of the ultra-wideband microstrip-to-coplanar stripline(MS-to-CPS) balun is proposed. The antenna size was reduced by removing the reflector on bottom layer and ground plane is used as a reflector. A planar balun that transforms from microstrip(MS) to balanced coplanar stripline(CPS) is characterized in the amplitude and phase imbalances at CPS output ports are investigated and discussed. As compared with the conventional balun, the proposed MS-to-CPS balun demonstrated very wideband performance from 7 to over 20 GHz. From the simulation study, amplitude and phase imbalances are within 1 dB and ${\pm}5^{\circ}$, respectively. The implemented antenna provides very wide bandwidth from 6.9 to 15.1 GHz(74.5 %). The gain of the antenna is from 3.7 to 5.5 dBi, the front-to-back ratio is more than 10 dB, and the nominal radiation efficiency is about 94 %.

Design of Double-Dipole Quasi-Yagi Antenna with 7 dBi gain (7 dBi 이득을 가지는 이중 다이폴 준-야기 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig;Baek, Woon-Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.245-252
    • /
    • 2016
  • In this paper, the design of a double-dipole quasi-Yagi antenna (DDQYA) with a gain over 7 dBi at 1.70-2.70 GHz band is studied. The proposed DDQYA consists of two strip dipoles with different lengths and a ground reflector, which are connected trough a coplanar stripline. The length of the second dipole is adjusted to increase the gain in the low frequency band, whereas a rectangular patch director is appended to the DDQYA to enhance the gain in the middle and high frequency band. The effects of the length of the second dipole, and the length and width of the director on the antenna performance are analyzed, and final design parameters to obtain a gain over 7 dBi are obtained. A prototype of the proposed DDQYA is fabricated on an FR4 substrate, and the experimental results show that the antenna has a frequency band of 1.60-2.86 GHz for a VSWR < 2, and measured gain ranges 7.2-7.6 dBi at 1.70-2.70 GHz band.