• Title/Summary/Keyword: Quasi-Static Operation

Search Result 30, Processing Time 0.022 seconds

A Study on Loading Arm Envelope and Alarm Setting according to Ship Movement

  • Choi, Byoung-Yeol;Jo, Hyo-Jae;Choi, Han-Sik;Choi, Dong-Eon
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.115-123
    • /
    • 2018
  • This study was carried using the new approach method to design appropriately the Loading Arm length and the alarm setting according to ship movements on Loading and Unloading marine Berth. The quasi-static mooring analysis was performed to estimate 110,000DWT ship's movements based on environmental conditions such as wind, current and wave. The mooring motion of the ship is very important to determine the loading arm scope, and in this case, the operation condition is performed on the ship without considering the damaged condition of the mooring line because the ship movement in case of damage is larger than intact, and all operations are stopped, the loading arm being released due to control system. From the result of mooring analysis, motion displacements, velocities and accelerations were simulated. They were used to simulate the maximum drifting speeds and distances. The maximum drifting speeds were checked to be satisfied within drifting speed limits. The total maximum drifting distances were simulated with alarm steps of the new approach method. Finally, the loading arm envelopes using the total maximum drifting distances were completed. Therefore, it was confirmed that the new approach method for loading arm envelopes and alarm settings was appropriate from the above results. In the future, it will be necessary to perform the further advanced dynamic mooring analysis instead of the quasi-static mooring analysis and to use the precise computer program analysis for various environments and ship movement conditions.

Design and Analysis of Composite Reflector of High Stable Deployable Antenna for Satellite (위성용 전개형 고안정 반사판 안테나 복합재 주반사판 설계 및 해석)

  • Dong-Geon Kim;Kyung-Rae Koo;Hyun-Guk Kim;Sung-Chan Song;Seong-Cheol Kwon;Jae-Hyuk Lim;Young-Bae Kim
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.230-240
    • /
    • 2023
  • The deployable reflector antenna consists of 24 unit main reflectors, and is mounted on a launch vehicle in a folded state. This satellite reaches the operating orbit and the antenna of satellite is deployed, and performs a mission. The deployable reflector antenna has the advantage of reduce the storage volume of payload of launch vehicle, allowing large space structures to be mounted in the limited storage space of the launch vehicle. In this paper, structural analysis was performed on the main reflector constituting the deployable reflector antenna, and through this, the initial conceptual design was performed. Lightweight composite main reflector was designed by applying a carbon fiber composite and honeycomb core. The laminate pattern and shape were selected as design variables and a design that satisfies the operation conditions was derived. Then, the performance of the lightweight composite reflector antenna was analyzed by performing detailed structural analysis on modal analysis, quasi-static, thermal gradient, and dynamic behavior.

Numerical Study on Earthquake Performance of Gravity Dam Considering Earthquake Frequencies (지진진동수에 따른 콘크리트 중력댐의 내진성능에 대한 해석적 사례연구)

  • Chai, Young-Suk;Min, In-Ki
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.64-74
    • /
    • 2016
  • Recently, the seismic stability evaluation of concrete gravity dams is raised due to the failure of dams occurred by the Izmit, Turkey and JiJi, Taiwan earthquake in 1999. Dams failure may incur loss of life and properties around the dam as well as damage to dam structure itself. Recently, there has been growing much concerns about "earthquake - resistance" or "seismic safety" of existing concrete gravity dams designed before current seismic design provisions were implemented. This research develops three evaluation levels for seismic stability of concrete gravity dams on the basis of the evaluation method of seismic stability of concrete gravity dams in U.S.A., Japan, Canada, and etc. Level 1 is a preliminary evaluation which is for purpose of screening. Level 2 is a pseudo-static evaluation on the basis of the seismic intensity method. And level 3 is a detail evaluation by the dynamic analysis. Evaluation results on existing concrete gravity dams on operation showed good seismic performance under designed artificial earthquake(KHC earthquake).

Dynamic Characteristic Analysis of 3-Level Half-bridge SSSC (3-레벨 반브리지로 구성된 SSSC의 동특성 분석)

  • 박상호;하요철;백승택;김희중;한병문
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.4
    • /
    • pp.317-324
    • /
    • 2001
  • This paper proposes a SSSC based on 3-level half-bridge inverters. The dynamic characteristic of the proposed SSSC was analyzed by EMTP simulation and a scaled hardware model, assuming that the SSSC is inserted in the transmission line of the one-machine-infinite-but power system. The proposed SSC has six 3-level half-bridge inverters per phase, which operates in PWM mode. The proposed SSSC generates a quasi-sinusoidal output voltage by 90 degree phase shift to the line current. The proposed SSSC does not require the coupling transformer for voltage injection, and has a flexibility in operation voltage by increasing the number of series connection.

  • PDF

Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.331-348
    • /
    • 2013
  • Effective monitoring, reliable data analysis, and rational data interpretations are challenges for engineers who are specialized in bridge health monitoring. This paper demonstrates how to use the Global Positioning System (GPS) and accelerometer data to accurately extract static and quasi-static displacements of the bridge induced by ambient effects. To eliminate the disadvantages of the two separate units, based on the characteristics of the bias terms derived from the GPS and accelerometer respectively, a wavelet based multi-step filtering method by combining the merits of the continuous wavelet transform (CWT) with the discrete stationary wavelet transform (SWT) is proposed so as to address the GPS deformation monitoring application more efficiently. The field measurements are carried out on an existing suspension bridge under the normal operation without any traffic interference. Experimental results showed that the frequencies and absolute displacements of the bridge can be accurate extracted by the proposed method. The integration of GPS and accelerometer can be used as a reliable tool to characterize the dynamic behavior of large structures such as suspension bridges undergoing environmental loads.

Finite Element Analysis of an Orthogonal Cutting Process with Low Speed (2차원 저속절삭에 대한 유한요소 해석)

  • Kim, Kug-Weon;Ahn, Tae-Kil;Lee, Woo-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.2
    • /
    • pp.10-15
    • /
    • 2006
  • An introduction to orthogonal cutting model by FEM is given, followed by a review of similar work. The cutting process is treated as quasi-static and strain rate insensitive, so the model is applicable only to low speed cutting operation. Chip separation is accomplished along a predefined cutting path by means of an element death procedure. Contact elements with friction capability are used to model the interaction between the tool and the workpiece. FEM results are compared with cutting experiments with low speed for brass, and good correlations are found.

  • PDF

Design of Two-Stage Class AB CMOS Buffers: A Systematic Approach

  • Martin, Antonio Lopez;Miguel, Jose Maria Algueta;Acosta, Lucia;Ramirez-Angulo, Jaime;Carvajal, Ramon Gonzalez
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.393-400
    • /
    • 2011
  • A systematic approach for the design of two-stage class AB CMOS unity-gain buffers is proposed. It is based on the inclusion of a class AB operation to class A Miller amplifier topologies in unity-gain negative feedback by a simple technique that does not modify quiescent currents, supply requirements, noise performance, or static power. Three design examples are fabricated in a 0.5 ${\mu}m$ CMOS process. Measurement results show slew rate improvement factors of approximately 100 for the class AB buffers versus their class A counterparts for the same quiescent power consumption (< 200 ${\mu}W$).

Launch Environment Requirements for Earth Observation Satellite (지구관측위성의 발사환경시험 요구조건)

  • Kim, Kyung-Won;Kim, Sung-Hoon;Kim, Jin-Hee;Rhee, Ju-Hun;Hwang, Do-Soon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.747-750
    • /
    • 2004
  • After launching, spacecraft is exposed to extreme environments. So spacecraft should be tested after design/manufacture to verify whether components can be operated functionally. Acceleration transferred from launch vehicle to spacecraft produces quasi-static load, sine vibration and random vibration. Random vibration is also induced by acoustic vibrations transferred by surface of spacecraft. And shock vibration is produced when spacecraft is separated from launch vehicle. To verify operation of spacecraft under these launch environments, separation shock test, sine vibration test, acoustic vibration test and random vibration test should be performed. This paper describes these launch environment test requirements.

  • PDF

A Biomechanical Model of Lower Extremity Movement in Seated Foot Operation

  • Kyu-Sung Hwang
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.60
    • /
    • pp.37-46
    • /
    • 2000
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. The model incorporated four rigid body segments with the twenty-four muscles to represent lower extremity This study deals with quasi-static movement to investigate dynamic movement effect in seated foot operation. It is found that optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles and antagonistic muscles reasonably. So, the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles and the antagonistic muscle effects from the stabilization of the joint. For the model validation, three male subjects performed the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. For the selection of optimal seated posture, a physiological meaningful criterion was developed for muscular load sharing developed. For exertion levels, the transition point of type F motor unit of each muscle is inferred by analyzing the electromyogram at the seated postures. Also, for predetermined seated foot operations exertion levels, the recruitment pattern is identified in the continuous exertion, by analyzing the electromyogram changes due to the accumulated muscle fatigue.

  • PDF

Structural Design and Analysis of Pico-class Satellite named STEP Cube Lab

  • Jeon, Su-Hyeon;Jang, Su-Eun;Jung, Hyun-Mo;Cha, Jin-Yeong;Oh, Hyun-Ung
    • International Journal of Aerospace System Engineering
    • /
    • v.1 no.1
    • /
    • pp.34-43
    • /
    • 2014
  • The STEP Cube Lab (Cube Laboratory for Space Technology Experimental Projects) is a 1U cube satellite developed by the Space Technology Synthesis Laboratory of Chosun University to be launched in 2015. Its mission objective is twofold: to determine which of the fundamental space technologies researched at domestic universities, will be potential candidates for use in future space missions and to verify the effectiveness of the technologies by investigating mission data obtained from on-orbit operation of the cube satellite. In this paper, a structural design concept based on the 1U standard to achieve the mission objective is introduced. The validity of the design has been demonstrated by quasi-static analysis and modal analysis. In addition, a non-explosive separation device triggered by burn wire heating, which is one of the main mission payloads is introduced.