• Title/Summary/Keyword: Quasi 3-dimensional Analysis

Search Result 97, Processing Time 0.026 seconds

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Three-dimensional stress analysis of composite laminates patches under extension load (인장하중 하에서 복합재 적층 패치의 3 차원 응력 해석)

  • Lee, Jae-Hun;Cho, Maeng-Hyo;Kim, Heung-Soo;Grediac, Michel
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.652-657
    • /
    • 2008
  • A stress distribution of composite laminates patches is obtained by using the Kantorovich method when the substrate is under uniaxial load. The analysis is based on the stress function approach and uses the complementary virtual work principle. The three-dimensional stresses satisfy the traction free conditions at the free edges and the top surfaces of the patch. The stress of the bottom surfaces of the patch is obtained from equilibrium equation of patch and substrate. To demonstrate the efficiency and validity of the proposed analysis, numerical examples for cross-ply and quasi-isotropic laminates are included. The present method provides accurate stresses in the interior and near the free edges of composite laminate patches.

  • PDF

Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.317-328
    • /
    • 2018
  • In this paper, a new refined quasi-three-dimensional (3D) shear deformation theory for the bending analysis of functionally graded plate is presented. The number of unknown functions involved in this theory is only four against five or more in the case of the other shear and normal deformation theories. Due to its quasi-3D nature, the stretching effect is taken into account in the formulation of governing equations. In addition, the effect of different micromechanical models on the bending response of these plates is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG plates whose properties vary continuously across the thickness according to a simple power law. The present theory accounts for both shear deformation and thickness stretching effects by a parabolic variation of displacements across the thickness, and the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The problem is solved for a plate simply supported on its edges and the Navier solution is used. The results of the present method are compared with others from the literature where a good agreement has been found. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG plates.

Turbulence Kinetic Energy Budgets of Tip Vortex Generated by a Fixed Wing (고정익 끝완류의 난류 운동에너지 분배 특성)

  • Bae, Hwang;Han, Yong Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.11
    • /
    • pp.1444-1452
    • /
    • 1999
  • The turbulence structure of e. tip vortex generated by e. fixed wing was investigated with the use of two-dimensional laser Doppler velocimetry. The velocity field, composed of circumferential end axial components, was measured on the vertical section to the vortex trail, located at 2C downstream from the wing tip in the incoming flow condition of $Re=2.24{\times}10^5$. A quasi 3-dimensional measurement technique by use of 2-dimensional LDV system was suggested for Reynolds stresses and the higher moments. The validity of this technique was confirmed with the uncertainty analysis. The budget of the turbulence kinetic energy was analyzed by those results in the radial direction of the vortex core. It is resulted that the production is to be very likely balanced with the dissipation in most range of the vortex core.

Ultimate Strength of Composite Laminates with Free-Edge Delamination (자유단 충간분리를 갖는 복합재 적층판의 최종 파괴강도)

  • 양광영;윤성운;김재열
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.2
    • /
    • pp.59-64
    • /
    • 2002
  • This paper presets experimental and analytical studies of ultimate strength of [$[30_2/-30_2/90]_S$ carbon/epoxy laminates with free-edge delamination under uniaxial tension. We performed tensile teat far laminates with Telflon inserted on interfaces to simulate initial free-edge delamination, The experiment reveals that extensional stiffness of the laminate decreases by the initiation of the delamination, and that strength of the laminate without delamination is smaller than that of the laminates with delamination. Generalized quasi-three delamination finite element analysis, which employs energy release rate and maximum stress criteria, predicts the ultimate strength of the laminates with sufficient accuracy.

Time Domain Analysis of Spar Platform in Waves (파랑 중 스파 플랫폼의 시간영역 해석)

  • LEE Ho-Young;LIM Choon-Gyu
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.167-171
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inetia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

  • PDF

Time Domain Analysis of a Moored Spar Platform in Waves (파랑 중 계류된 스파 플랫폼의 시간영역 해석)

  • Lee, Ho-Young;Lim, Choon-Gyu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.5
    • /
    • pp.1-7
    • /
    • 2004
  • The Spar platform with deep draft is characterized as effective structure in extreme wave condition, which has larger natural period than that of waves in sea. In this paper, the time domain simulation of motion responses of Spar with catenary mooring line is presented in irregular waves. The memory effect is modeled by added mass at infinite frequency and convolution integrals in terms of wave damping coefficients. The added mass, wave damping coefficients and wave exciting forces are obtained from three-dimensional panel method in the frequency domain. The motion equations are consisted of forces for inertia, memory effect, hydrostatic restoring, wave exciting and mooring line. The forces of mooring line are modeled as quasi-static catenary cable.

Aerodynamic Design and Analysis of a Centrifugal Compressor in a 40kW Class Turbogenerator Gas Turbine (40kW급 터보제너레이터용 원심압축기의 공력설계 및 유동해석)

  • Oh, J.S.;Yoon, E.S.;Cho, S.Y.;Oh, K.S.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.128-135
    • /
    • 1998
  • Procedures and results of aerodynamic design of a centrifugal compressor are presented for development of a 40kW class turbogenerator gas turbine. Specification of higher level of total pressure ratio of 4 and total efficiency of $80\%$ requires advanced methods of design and analysis. In the meanline design/analysis, a method with conventional loss modeling and a method with the two-zone model are alternately used for more reliable prediction. In the impeller blade generation, a series of Bezier curve are combined to produce meridional contours and distributions of blade camber angle and blade thickness. Intermediate profiles of blades are repeatedly produced and changed to be finally fixed through quasi-three dimensional Euler flow analysis. Three dimensional compressible turbulent flow analysis is then performed for the impeller to be confirmed in the final step of design. Satisfactory results in the aerodynamic performance are obtained, which assures that there is no need of aerodynamic re-design.

  • PDF

Analysis of Time-Dependent Deformation of CFRP Considering the Anisotropy of Moisture Diffusion

  • Arao, Yoshihiko;Koyanagi, Jun;Hatta, Hiroshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.359-372
    • /
    • 2008
  • The moisture absorption behavior of carbon fiber-reinforced plastic (CFRP) and its effect on dimensional stability were examined. Moisture diffusivity in CFRP was determined by measuring a specimen's weight during the moisture absorption test. Three types of CFRP specimens were prepared: a unidirectionally reinforced laminate, a quasi-isotropic laminate and woven fabric. Each CFRP was processed into two geometries - a thin plate for determination of diffusivity and a rod with a square cross-section for the discussion of two-dimensional diffusion behavior. By solving Fick's law expanded to 3 dimensions, the diffusivities in the three orthogonal directions were obtained and analyzed in terms of the anisotropy of CFRP moisture diffusion. Coefficients of moisture expansion (CMEs) were also obtained from specimen deformation caused by moisture absorption. During moisture absorption, the specimen surfaces showed larger deformation near the edges due to the distribution of moisture contents. This deformation was reasonably predicted by the finite element analysis using experimentally determined diffusivities and CMEs. For unidirectional CFRP, the effect of the fiber alignment on CME was analyzed by micromechanical finite element analysis (FEA) and discussed.

PARKER-JEANS INSTABILITY IN THE GALACTIC GASEOUS DISK. I. LINEAR STABILITY ANALYSIS AND TWO-DIMENSIONAL MHD SIMULATIONS

  • LEE S. M.;KIM JONGSOO;FRANCO J.;HONG S. S.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.249-255
    • /
    • 2004
  • Here we present a linear stability analysis and an MHD 2D model for the Parker-Jeans instability in the Galactic gaseous disk. The magnetic field is assumed parallel to a Galactic spiral arm, and the gaseous disk is modelled as a multi-component, magnetized, and isothermal gas layer. The model employs the observed vertical stratifications for the gas density and the gravitational acceleration in the Solar neighborhood, and the self-gravity of the gas is also included. By solving Poisson's equation for the gas density stratification, we determine the vertical acceleration due to self-gravity as a function of z. Subtracting it from the observed gravitational acceleration, we separate the total acceleration into self and external gravities. The linear stability analysis provides the corresponding dispersion relations. The time and length scales of the fastest growing mode of the Parker-Jeans instability are about 40 Myr and 3.3 kpc, respectively. In order to confirm the linear stability analysis, we have performed two-dimensional MHD simulations. These show that the Parker-Jeans instability under the self and external gravities evolves into a quasi-equilibrium state, creating condensations on the northern and southern sides of the plane, in an alternate manner.