• Title/Summary/Keyword: Quartz engine

검색결과 22건 처리시간 0.021초

Feasibility Study on Quartz Liner Application for Marine Diesel Engine Visualization

  • Lee Kyo Seung;Baek Moon Yeal;Assanis Dennis N.
    • Journal of Ship and Ocean Technology
    • /
    • 제8권4호
    • /
    • pp.34-44
    • /
    • 2004
  • Engine visualization is the most important process to develop the new engine. But this step has a major difficulty that is almost impossible to access the engine on running. Therefore, little indication from the experimental and analytical results has been so far. This work has conducted the important issue of developing a quartz liner. And it has given us good qualitative and quantitative results of temperature and stress fields in the quartz cylinder by considering forced convection of outside quartz liner, thickness of the quartz liner and preheating effect to operate quartz engine safely.

직접분사식 디젤 엔진에서 연료 분사 인자에 따른 연소 특성 (Effects of Fuel Injection Conditions on Combustion Characteristics of a DI Diesel Engine)

  • 국상훈;유준;박철웅;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.33-38
    • /
    • 2002
  • An optical single cylinder diesel engine equipped with a common-rail injection system has been built to investigate diesel combustion and emission characteristics. Three optical widows (piston crown quartz for bottom view of the cylinder, upper piston quartz for allowing laser sheet and liner quartz for side view) have been placed in the optical engine to visualize spray characteristics and combustion process inside the cylinder. Before doing further research using various optical diagnostics with the optical engine, fundamental combustion experiments and flame visualization incorporating a high speed motion analyser have been carried out with a wide range of engine operating conditions.

  • PDF

THERMO-MECHANICAL ANALYSIS OF OPTICALLY ACCESSIBLE QUARTZ CYLINDER UNDER FIRED ENGINE OPERATION

  • Lee, K.S.;Assanis, D.N.
    • International Journal of Automotive Technology
    • /
    • 제1권2호
    • /
    • pp.79-87
    • /
    • 2000
  • Analytical approach was followed in this work under both the steady state and transient operating conditions to find optimum boundary conditions, where the optically accessible quartz engine can run safely without breaking. Temperature and stress distribution was predicted by FEM analysis. In order to validate thermal boundary condition, model reliability and constraint, outside cylinder temperature was measured and previous study was also followed up numerically. To reduce thermal stress level, three types of outside cooling (natural, moderate forced and intensive forced convection) were considered. Effects of clamping force and combustion pressure were conducted to investigate mechanical stress level. Cylinder thickness, was changed to fine the optimum cylinder thickness. The versatile results achieved from this work can be basic indication, which is capable of causing a sudden quartz cylinder breaking during fired operation.

  • PDF

가시화를 이용한 가솔린 엔진의 실린더 벽면에서의 연료액막 거동 분석 (Investigation of the Liquid Fuel Film Behavior on the Cylinder Liner in an SI Engine)

  • 조훈;황승환;이종화;민경덕
    • 대한기계학회논문집B
    • /
    • 제27권10호
    • /
    • pp.1370-1376
    • /
    • 2003
  • The investigation of liquid fuel film on the cylinder liner is an essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to investigate the liquid fuel film on the quartz liner in the optical engine. For this, the optical engine with hydraulic system was designed based on the commercial SI engine. The visualization was based on the laser-induced fluorescence with total reflection technique. Using a quartz liner and a special lens, only the liquid fuel film on the liner was visualized. With using this technique, the distribution of the fuel film on the cylinder liner was measured for different engine conditions and injection timing in the optical engine.

LHR 엔진 설계를 위한 엔진 사이클 시뮬레이션 및 FEM 검증 (Engine Cycle Simulation and FEM Validation for LHR Engine Design)

  • 이교승;백문열
    • 동력기계공학회지
    • /
    • 제9권2호
    • /
    • pp.26-32
    • /
    • 2005
  • It has been an earnest wish for engineers to convert heat loss from engine into power, but it is almost impossible in actual application. The serious problem in engine operation without cooling is that the cylinder material is sometimes melted by exceeding melting temperature. Following the first law of thermodynamics, it is possible that heat loss to cooling water can be converted into mechanical work through crankshaft. In this study, LHR(Low Heat Rejection) engine coated with zirconia and made by quartz was introduced as one of the promising engine and several useful qualitative and quantitative data were drawn.

  • PDF

레이저 유도 형광법을 이용한 가솔린 엔진의 실린더 벽면에 존재하는 연료액막 가시화 (Measurement of Liquid Fuel Film on the Cylinder Liner in an SI Engine Using an LIF Technique)

  • 조훈;민경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.25-30
    • /
    • 2001
  • The liquid fuel film on the cylinder liner is believed to be a major source of engine-out hydrocarbon emissions in SI engines, especially during cold start and warm-up period. Quantifying the liquid fuel film on the cylinder liner is essential to understand the engine-out hydrocarbon emissions formation in SI engines. In this research, two-dimensional visualization was carried out to quantify liquid fuel film on the quartz liner in an SI engine test rig. The visualization was based on laser-induced fluorescence and total reflection. Using a quartz liner and a special lens, only the liquid fuel on the liner was visualized. The calibration technique was developed to quantify the fluorescence signal with the thickness gage and the calibration device. The fluorescence intensity increases linearly with increase in the fuel film thickness on the quartz liner. Using this technique, the distribution of the fuel film thickness on the cylinder liner was measured quantitatively for different valve lifts and injected fuel mass in the test rig.

  • PDF

가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part II - 저/중 와류의 경우 (In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an Sl Engine : Part II-With Low/Medium Swirl)

  • 엄인용;조용석
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.9-17
    • /
    • 2001
  • This paper is the second of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected Sl engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray fur the visualization purposes. This results have been compared with steady flow concentration measurement. For low/medium swirl port, the early injection makes such a fuel distribution state that is upper-rich, middle-lean and lower-rich along the combustion chamber and cylinder by tumbling motion. On the other hand, the late injection induces upper-rich, middle-lean and lower-rich state due to the short fuel penetration.

  • PDF

가솔린 엔진에서 연료분사시기와 포트특성에 따른 실린더 내 연료거동 : Part III - 고와류의 경우 (In-Cylinder Fuel Behavior According to Fuel Injection Timing and Port Characteristics in an SI Engine : Part III-With High Swirl)

  • 엄인용;조용석
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.18-26
    • /
    • 2001
  • This paper is the third of 3 companion papers which investigate axial stratification process. In-cylinder fuel behavior has been investigated in the port injected SI engine by visualizing for the purpose of understanding stratification. Planar laser light sheet from an Nd:YAG laser has been illuminated through the transparent quartz cylinder of the single cylinder optical engine and the Mie scattered light has been captured through the quartz window in the piston head with an ICCD camera. Fuel has been replaced with an air-ethanol mixture to utilize atomized fuel spray for the visualization purposes. This results have been compared with steady flow concentration measurement. In high swirl port, the most fuel remains at combustion chamber and upper cylinder region without being affected by injection timing. The macro-distributed state is not changed but the difference of the amount of fuel around the spark plug varies according to injection timing, which determines LML.

  • PDF

스파크 점화 엔진에서 초기화염 발달의 가시화 (Visualization of Initial Flame Development in an SI Engine)

  • 엄인용
    • 한국가시화정보학회지
    • /
    • 제2권2호
    • /
    • pp.45-51
    • /
    • 2004
  • Initial flame development and propagation were visualized under different fuel injection timings to relate the initial flame development to the engine stability in a port injection SI engine. Experiments were performed in an optical single cylinder engine modified from a production engine and images were captured through the quartz window mounted in the piston by an intensified CCD camera. Stratification state was controlled by varying injection timing. Under each injection condition, the flame images were captured at the pre-set crank angles. These were averaged and processed to characterize the flame. The flame stability was estimated by the weighted average of flame area, luminosity, and standard deviation of flame area. Results show that stratification state according to injection timing did not affect on the direction of flame propagation. The flame development and the initial flame stability are strongly dependent on the stratified conditions and the initial flame stability governs the engine stability and lean misfire limit.

  • PDF

혼합기의 유동 및 점화조건에 따른 초기화염의 전파특성 (The influence of Mixture Flow and the Ignition Conditions on the Initial Flame Propagation Characteristics)

  • 김진영;이중순;하종률
    • 한국자동차공학회논문집
    • /
    • 제7권6호
    • /
    • pp.57-64
    • /
    • 1999
  • Initial flame development and propagation were visualized under the new ignition system developed to estimate the effects of ignition characteristics on the engine performance in a port injection SI engine. Effects of intake air flow characteristics were also investigated by three different kinds of the swirl control valve. Experiments were performed in an optical single cylinder engine modified form a commercial engine. Flame images were captured through the quartz window mounted in the piston by the high speed video camera and analyzed to compare initial flame development. Results show that IMEP tends to rise slightly as the ignition duration gets longer. The direction of flame propagation is decisively governed by the in-cylinder flow motion. Every flame grows toward the exhaust valve forming a kind of turbulent flame. Initial flame propaagation characteristics are very similar to ones analyzed form pressure data.

  • PDF