• Title/Summary/Keyword: Quantum classical dynamics

Search Result 11, Processing Time 0.015 seconds

Design and Simulation Study on Three-terminal Graphene-based NEMS Switching Device (그래핀 기반 3단자 NEMS 스위칭 소자 설계 및 동작 시뮬레이션 연구)

  • Kwon, Oh-Kuen;Kang, Jeong Won;Lee, Gyoo-Yeong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.6
    • /
    • pp.939-946
    • /
    • 2018
  • In this work, we present simple schematics for a three-terminal graphene-based nanoelectromechanical switch with the vertical electrode, and we investigated their operational dynamics via classical molecular dynamics simulations. The main structure is both the vertical pin electrode grown in the center of the square hole and the graphene covering on the hole. The potential difference between the bottom gate of the hole and the graphene of the top cover is applied to deflect the graphene. By performing classical molecular dynamic simulations, we investigate the nanoelectromechanical properties of a three-terminal graphene-based nanoelectromechanical switch with vertical pin electrode, which can be switched by the externally applied force. The elastostatic energy of the deflected graphene is also very important factor to analyze the three-terminal graphene-based nanoelectromechanical switch. This simulation work explicitly demonstrated that such devices are applicable to nanoscale sensors and quantum computing, as well as ultra-fast-response switching devices.