• Title/Summary/Keyword: Quantum chemistry

Search Result 474, Processing Time 0.04 seconds

Syntheses of CdTe Quantum Dots and Nanoparticles through Simple Sonochemical Method under Multibubble Sonoluminescence Conditions

  • Hwang, Cha-Hwan;Park, Jong-Pil;Song, Mi-Yeon;Lee, Jin-Ho;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2207-2211
    • /
    • 2011
  • Colloidal cadmium telluride (CdTe) quantum dots (QDs) and their nanoparticles have been synthesized by one pot sonochemical reactions under multibubble sonoluminescence (MBSL) conditions, which are quite mild and facile compared to other typical high temperature solution-based methods. For a typical reaction, $CdCl_2$ and tellurium powder with hexadecylamine and trioctylphosphine/trioctylphosphineoxide (TOP/TOPO) as a dispersant were sonicated in toluene solvent at 20 KHz and a power of 220W for 5-40 min at 60 $^{\circ}C$. The sizes of CdTe particles, in a very wide size range from 2 nm-30 ${\mu}m$, were controllable by varying the sonicating and thermal heating conditions. The prepared CdTe QDs show different colors from pale yellow to dark brown and corresponding photoluminescence properties due mainly to the quantum confinement effect. The CdTe nanoparticles of about 20 nm in average were found to have band gap of 1.53 eV, which is the most optimally matched band gap to solar spectrum.

QUANTUM CHAIN PROCESSES IN ALL-TRANS-RETINAL AND ALL-TRANS-DIPHENYLBUTADIENE

  • Singh, A. K.;Aruna, R. V.
    • Journal of Photoscience
    • /
    • v.3 no.3
    • /
    • pp.121-125
    • /
    • 1996
  • Quantum yield of photoisomerization of degassed n-hexane solution of all-trans-retinal (1) and all-trans-1, 4-diphenylbutadiene (4) at 25$\circ$C under direct irradiation conditions increases as the concentrations of 1 and 4 increase. Further, fluorescence lifetime of 4 at ambient temperature is also found to increase as the concentrations of 4 are increased. The results are discussed in terms quantum chain process which occurs due to exchange of energy between various conformers of the compounds concerned.

  • PDF

CdTe Quantum Dots as Fluorescent Probes for Josamycin Determination

  • Peng, Jinyun;Nong, Keliang;Mu, Guangshan;Huang, Fengying
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2727-2731
    • /
    • 2011
  • A new method for the determination of josamycin has been developed based on quenching of the fluorescence of 3-mercaptopropionic acid-capped CdTe quantum dots (MPA-CdTe QDs) by josamycin in ethanol. Reaction time, interfering substances on the fluorescence quenching, and mechanism of the interaction of CdTe QDs with josamycin were investigated. Under optimum conditions, the relative fluorescence intensity was linearly proportional to the concentration of josamycin between 12.0 and 120.0 ${\mu}g\;mL^{-1}$ with a correlation coefficient of 0.9956 and a detection limit of 2.5 ${\mu}g\;mL^{-1}$. The proposed method was successfully applied to commercial tablets, and the results were satisfactory, i.e. consistent with those of high-performance liquid chromatography (HPLC).