• Title/Summary/Keyword: Quantum Yield

Search Result 285, Processing Time 0.047 seconds

Dynamics of RNA Bacteriophage MS2 Observed with a Long-Lifetime Metal-Ligand Complex

  • Kang, Jung Sook;Yoon, Ji Hye
    • Journal of Photoscience
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2004
  • [Ru(2,2'-bipyridine)$_2$(4,4'-dicarboxy-2,2'-bipyridine)]$^{2+}$(RuBDc) is a very photostable probe that possesses favorable photophysical properties including long lifetime, high quantum yield, large Stokes' shift, and highly polarized emission. To evaluate the usefulness of this luminophore (RuBDc) for studying macromolecular dynamics, its intensity and anisotropy decays when conjugated to RNA bacteriophage MS2 were examined using frequency-domain fluorometry with a high-intensity, blue light-emitting diode (LED) as the modulated light source. The intensity decays were best fit by a sum of two exponentials, and the mean intensity decay time was 442.2 ns. The anisotropy decay data showed a single rotational correlation time (2334.9 ns), which is typical for a spherical molecule. The use of RuBDc enabled us to measure the rotational correlation time up to several microseconds. These results indicate that RuBDc can be useful for studying rotational diffusion of biological macromolecules.s.

  • PDF

Rhodamine 6G Based New Fluorophore Chemosensor Toward Hg2+

  • Son, Young-A;Park, June-Min
    • Textile Coloration and Finishing
    • /
    • v.24 no.3
    • /
    • pp.158-164
    • /
    • 2012
  • Rhodamine dyes belong to xanthene family has excellent photostability and photophysical properties. In rhodamine dyes, Rhodamine 6G and its precursors also have xanthene chromophore and it shows high fluorescent quantum yield. Rhodamine 6G derivates are simple to synthesis and its high sensitivity and water solubility are suitable as good chemosensor. In this regard, Rhodamine 6G derivates which have selectivity to specific metal cation can used to detect various heavy metal ions. In this study, rhodamine 6G derivatives were synthesized by reaction of rhodamine 6G hydrazide and glyoxal and 4-phenyl thiosemicarbazide and it showed colorimetric and fluorescence sensing toward $Hg^{2+}$ ion. This novel chemosensor was analyzed and measured on UV-Vis and fluorescence spectrophotometer. HOMO/LUMO values were also calculated by computational calculation.

Evaluation of Microstructural and Mechanical Properties of SA508 cl.3 Heat Affected Zone Produced by RPV Cladding

  • Lee, J.S.;Kim, I.S.;Kwon, S.C.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.867-868
    • /
    • 2004
  • The maximum width of HAZ of SA508치.3 steel produced by overlay RPV cladding was approximately 10 mm and it was composed of variety of microstructures with various grain size and precipitates. In addition, along the weld fusion line there formed a heavy carbide precipitation zone in the width of $20{\sim}30\;{\mu}m$. 2. As the specimen sampling position approached to the weld fusion line, the increase in yield and tensile strength was approximately 90 and 40 MPa, respectively. Meanwhile, the plastic fracture strain reduced from 14 to 8 percent. 3. The lowest SP energy and the highest ductile to brittle transition temperature in the HAZ were observed at the coarse- and fine-grained HAZ.

  • PDF

Strain-Modulated Photoluminescence in Single-Layer $MoS_2$

  • Go, Taek-Yeong;Park, Gwang-Hui;Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.620-620
    • /
    • 2013
  • When $MoS_2$ is thinned to single layer (1L), photoluminescence (PL) quantum yield drastically increases due to emergence of direct band gap. A recent theory predicts that the electronic structure of 1L $MoS_2$ is very sensitive to its lattice constants. We investigated the response of 1L $MoS_2$ to biaxial tensile strain using spatially resolved PL and Raman spectroscopy. Changes in the lattice constants were monitored by the Raman frequency of the in-plane ($E^1{_2g}$) mode. Systematic correlations between PL and Ramanspectral features, revealed in the preliminary results, will be further tested with samples on other substrates and against thermal stress. The results will also be discussed in regard to the theory which predicts that 1L $MoS_2$ becomes an indirect semiconductor at small tensile strain and turns metallic when further extended.

  • PDF

Benzothiazole fluorine-boron core complex: quantum luminescence controls

  • Son, Young-A;Kim, Hyung-Joo;Li, Xiaochuan
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2012.03a
    • /
    • pp.71-71
    • /
    • 2012
  • To control luminescence emission property, a novel series of strong fluorescent fluorin-boron complexes were synthesized in higher yield. The resulting structural analysis was completed. Small molecules with a built-in fluorine-boron core structural architecture has been attracted considered attention as the key emissive elements due to the their good properties such as bipolar charge transport and high photo efficiency. Thus, new type of fluorine-boron(F-B) complexes are designed and prepared. Changing the substituent position on fluorophore ring provided a deep understanding on the relationship between structure and optical properties.

  • PDF

Photocatalytic degradation of MTBE in gas phase (광촉매 반응에 의한 기상 MTBE 분해)

  • Park, Sang-Eun;Joo, Hyun-Ku;Jeong, Hee-Rok;Chun, Myung-Suk;Auh, Chung-Moo;Kang, Joon-Wun
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.55-67
    • /
    • 2001
  • This study contains the photocatalytic degradation of methyl-tert-butyl ether(MTBE), one of water-contaminating substances, into $CO_2$. Herein was investigated factors, kinetics, and reaction pathways related with MTBE degradation. This works is possible to be applied in the field of environmental remediation such as undergroundwater purification with optimized system configuration in the near future.

  • PDF

Zn(II)porphyrin Helical Arrays: A Strategy to Overcome Conformational Heterogeneity by Host-Guest Chemistry

  • Yoon, Zin-Seok;Easwaramoorthi, Shanmugam;Kim, Dong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.1
    • /
    • pp.197-201
    • /
    • 2008
  • Conformational heterogeneity of directly linked multiporphyrin arrays with larger molecular length retards their utilities in practical applications such as two-photon absorption and molecular photonic wire. In this regard, here we adopted a way to overcome the conformational heterogeneity through hydrogen bonding by selective binding of meso aryl substituents of porphyrins (host) with urea (guest) to form helical structure. Using steady-state and time-resolved spectroscopy, we observed the enhanced fluorescence quantum yield by ~1.8 to 2.4 times, enhanced anisotropy values and the disappearance of fast fluorescence decay component in the host-guest helical forms. In addition, the enhanced nonlinear optical responses of helical arrays infer the extended inter-porphyrin electronic coupling due to a significant change in dihedral angle between the neighboring porphyrin moieties. The current host-guest strategy will provide a guideline to improve the structural homogeneity of the photonic wire.

Polymer Light-Emitting Diodes Based on Poly(3-hexyl thiophene)

  • Chang, Seoul;Kim, Nam-Hee
    • Fibers and Polymers
    • /
    • v.1 no.1
    • /
    • pp.25-31
    • /
    • 2000
  • Poly(3-hexyl thiophene)(P3HT) and poly(3-dodecyl thiophene)(P3DT) were polymerized by oxidative coupling with ferric chloride. The P3HT light-emitting device emitted red light and it could be observable in the ordinary indoor light. The device had the turn-on electric field of about 3$\times$$10^7$ V/m. The maximum electroluminescene (EL) intensity was obtained when the thickness of polymer layer was about 130 nm in IT0/P3HT/Al device. The maximum external quantum yield was 0.002%. The maximum luminance was 21 cd/$m^2$. The EL intensity decreases with increasing the crystallinity of the polymer layer. By using the oriented poly(3-alkyl thiophene)(PAT) layer as an electroluminescent layer in the ITO/polymer/Al light-emitting devices, the polarized EL light emission was observed. The EL intensity ratio of parallel to perpendicular direction to the stretch direction for P3HT was about 1.40.

  • PDF

EFFECT OF NITROGEN POSITION ON EXCITED STATE PROPERTIES OF 1-(9- ANTHRYL )-2-(n-QUINOLINYL)ETHENES

  • Shin, Eun-Ju
    • Journal of Photoscience
    • /
    • v.6 no.2
    • /
    • pp.61-65
    • /
    • 1999
  • The fluorescence properties and photoisomerization behavior of 1-(9-anthryl)-2-(n-quinolinyl)ethene (n-AQE, n=2-4) have been investigated in various solvents. t-3-AQE is strongly fluorescent, but does not accomplish photoisomerization, similar to parent hydrocarbon compound, t-1-(9-anthryl)-2-phenylethene (t-9-APE) or t-1-(9-anthryl)-2-(1-naphthyl)ethene (t-1-ANE). Fluorescence and photoisomerization oft-2-AQE and t-4-AQE are strongly affected by solvent polarity. Dependence of fluorescence quantum yield on the solvent polarity is moderate for t-2-AQE and large for t-4-AQE. In nonpolar solvent (in n-hexane), they exhibit relatively strong fluorescence, but do not isomerize to cis isomer on irradiation, even if inefficient isomerization is observed for t-4-AQE. However, as solvent polarity increases, their fluorescences become weak with efficient photoisomerization to corresponding cis isomer. Intramolecular charge-transfer excited state is presumed to contribute to photoisomerization. The S$_1$ decay parameters were found to be solvent-dependent due to the charge-transfer character of lowest S$_1$ state. In polar solvents, the activation barrier to twisting is reduced enhancing the isomerization of r-2-AQE and t-4-AQE in the singlet manifold.

  • PDF

SPECTRAL AND PROTOPHYSICAL PROPERTIES OF 1-PYRAZINYL-2-(3- QUINOLINYL)ETHYLENE

  • Bong, Pill-Hoon;Ryoo, Jae-Hwan
    • Journal of Photoscience
    • /
    • v.6 no.4
    • /
    • pp.171-176
    • /
    • 1999
  • The spectral and photophysical properties of trans-1-pyrazinyl-2-(3-quinolinyl)ethylene (trans-3- PyQE) are investigated under various conditions in order to obtain information on ground and excited states. The absorption spectrum of trans-3-PyQE changes slightly with varying degree of solvent polarity ; the. fluorescence spectrum is shifted to the red and becomes broad and structureless as the solvent polarity increases. The fluorescence quantum yield increases with increasing solvent polarity. The fluorescence intensity of trans-3-PyQE decreases as the concentration of methyl iodide increases. The fluorescence spectra of trans-3-PyQE changes markedly upon the variation of the excitation wavelength, presumably due to an equilibrium between conformers originating from the rotation of a quasi-single bond between the quinolinyl group and ethylenic carbon atom. These results indicate that the spectral and photophysical properties of trans-3-PyQE are strongly influenced by solvent, heavy atom, and an equilibrium between conformers

  • PDF