• Title/Summary/Keyword: Quantum Circuit

Search Result 172, Processing Time 0.027 seconds

Light Trapping in Silicon Based Tandem Solar Cell: A Brief Review

  • Iftiquar, Sk Md;Park, Hyeongsik;Dao, Vinh Ai;Pham, Duy Phong;Yi, Junsin
    • Current Photovoltaic Research
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2016
  • Among the various types of solar cells, silicon based two terminal tandem solar cell is one of the most popular one. It is designed to split the absorption of incident AM1.5 solar radiation among two of its component cells, thereby widening the wavelength range of external quantum efficiency (EQE) spectra of the device, in comparison to that of a single junction solar cell. In order to improve the EQE spectra further and raise short circuit current density ($J_{sc}$) an optimization of the tradeoff between the top and bottom cell is needed. In an optimized cell structure, the $J_{sc}$ and hence efficiency of the device can further be enhanced with the help of light trapping scheme. This can be achieved by texturing front and back surface as well as a back reflector of the device. In this brief review we highlight the development of light trapping in the silicon based tandem solar cell.

A study on an analysis of the impedance matching efficiency of 100 GHz band waveguide - type SIS mixer (100 GHz 대역 도파관형 SIS 믹서의 임피던스 정합 효율에 관한 해석)

  • 한석태;김효령;이창훈;박종애;정현수;김광동;김태성;박동철
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.81-89
    • /
    • 1996
  • Quantum RF impedance of SIS (superconductor insulator superconductor) junction has been analyzed by using through on tucker's quantum mixer theory in the frequency range form 80 GHz to 120 GHz. The embedding impedance of waveguide-type mixer mount and its equivalent circuit have been evaluated. From these evaluated results, the impedance matching efficiency between mixer mount embedding impedance and mixer port impedance of upper-side band and IF which were determined by augmented admittance matrix with given backshort position has been discussed in detail. It is found that the mixer with fixed backshort mount ahs a impedance matching efficiency about 80% at each port of mixer within 85GHz to 115GHz, which implys a conversion los of mixer would be good enough to be operated such a wide band frequency range. Therefore, the theoretical evaluated results show that our method can be used ot design the mixer mount without any mechanical tuning elements such a backshort or an E-plane tunners for wide band operation.

  • PDF

Design Improvement and Measurement of a Rapid Single Flux Quantum Confluence Buffer

  • Baek, Seung-Hun;Kim, Jin-Young;Kim, Sehoon;Kang, Joonhee;Jungb, Ku-Rak;Park, Jong-Hyeok;Hahnb, Teak-Shang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.41-45
    • /
    • 2004
  • Rapid Single flux quantum (RSFQ) confluence buffer is widely used in complex superconductive digital circuits. In this work, we have improved the currently used confluence buffer and obtained a more soundly designed confluence buffer. In simulations, improvements in the bias margins of 11 % and the global margins of 10%, compared to the previously used confluence buffer, were achieved. Global margins are very important in estimating a process error range allowed in fabrications. We used two circuit simulation tools, WRspice and Julia, to design and optimize the confluence buffer. We used Xic to obtain a mask layout. We fabricated the improved circuits by using Nb technology. The test results at low frequency showed that the improved confluence buffer operated correctly and had a very wide main bias margin of +/-43% enhanced from +/-26% of the previously used confluence buffer.

A CMOS Bandgap Reference Voltage Generator for a CMOS Active Pixel Sensor Imager

  • Kim, Kwang-Hyun;Cho, Gyu-Seong;Kim, Young-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.71-75
    • /
    • 2004
  • This paper proposes a new bandgap reference (BGR) circuit which takes advantage of a cascode current mirror biasing to reduce the V$\_$ref/ variation, and sizing technique, which utilizes two related ratio numbers k and N, to reduce the PNP BJT area. The proposed BGR is designed and fabricated on a test chip with a goal to provide a reference voltage to the 10 bit A/D(4-4-4 pipeline architecture) converter of the CMOS Active Pixel Sensor (APS) imager to be used in X-ray imaging. The basic temperature variation effect on V$\_$ref/ of the BGR has a maximum delta of 6 mV over the temperature range of 25$^{\circ}C$ to 70$^{\circ}C$. To verify that the proposed BGR has radiation hardness for the X-ray imaging application, total ionization dose (TID) effect under Co-60 exposure conditions has been evaluated. The measured V$\_$ref/ variation under the radiation condition has a maximum delta of 33 mV over the range of 0 krad to 100 krad. For the given voltage, temperature, and radiation, the BGR has been satisfied well within the requirement of the target 10 bit A/D converter.

Design of Extendable QCA 4-to-2 Encoder Based on Majority Gate (확장성을 고려한 다수결 게이트 기반의 QCA 4-to-2 인코더 설계)

  • Kim, Tae-Hwan;Jeon, Jun-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.603-608
    • /
    • 2016
  • Encoding means converting or processing form or format of information into the other forms to standardize, secure, improve processing speed, store saving spaces and etc. Also, Encoding is converting the information so as to do transmit other form on the sender's information to the receiver in Information-Communication. The device that is conducting the processing is called the encoder. In this dissertation, proposes an encoder of the most basic 4-to-2 encoder. proposed encoder consists of two OR-gate and the proposed structure designs and optimize the spacing of the cell for the purpose of minimizing noise between wiring. Through QCADesigner conducts simulation of the proposed encoder and analyzes the results confirm the effectiveness.

Application of Voltage-Controlled 12-Laser Diode Array in the Optical Fiber Communication (전압에 의하여 구동 가능한 12-Laser Diode Array의 광통신에의 응용)

  • Lee, Shang-Shin;Jhee, Yoon-Kyoo
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.11
    • /
    • pp.1-8
    • /
    • 1990
  • We made a 12-Laser Diode Array consisting of 12 Graded Index Separate Confinement (GRINSCH) InGaAs/Inp Buried Heterostructure 4 Quantum Well Laser Diodes and examined the potential of controlling lasing operation of each laser diode by the voltage to its electroabsorption region. Using Si V-Groove with 12 V-grooves, a 12-Laser Diode Array, and 12 optical fibers, we investigated the various characteristics of each laser diode by changing the voltage to its electro-absorption region. Finally, we thought over the promising way of implementing optical local area communication between electric circuit boards or between subscribers and a central office using a 12-Laser Diode Array, Si V-groove, and optical fibers.

  • PDF

Current-Voltage and Conductance Characteristics of Silicon-based Quantum Electron Device (실리콘 양자전자소자의 전류-전압 및 컨덕턴스 특성)

  • Seo, Yong-Jin
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.811-816
    • /
    • 2019
  • The silicon-adsorbed oxygen(Si-O) superlattice grown by ultra high vacuum-chemical vapor deposition(UHV-CVD) was introduced as an epitaxial barrier for silicon quantum electron devices. The current-voltage (I-V) measurement results show the stable and good insulating behavior with high breakdown voltage. It is apparent that the Si-O superlattice can serve as an epitaxially grown insulating layer as possible replacement of silicon-on-insulator(SOI). This thick barrier may be useful as an epitaxial insulating gate for field effect transistors(FETs). The rationale is that it should be possible to fabricate a FET on top of another FET, moving one step closer to the ultimate goal of future silicon-based three-dimensional integrated circuit(3DIC).

Post-Quantum Security Evaluation Through SPECK Quantum Circuit Optimization (SPECK 양자 회로 최적화를 통한 양자 후 보안 강도 평가)

  • Jang, Kyung-Bae;Eum, Si-Woo;Song, Gyeong-Ju;Yang, Yu-jin;Seo, Hwa-Jeong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.243-246
    • /
    • 2021
  • 양자 알고리즘이 수행 가능한 양자 컴퓨터는 기존 암호 시스템의 보안성을 낮추거나 깨뜨릴 수 있다. 이에 양자 컴퓨터의 공격 관점에서 기존 암호 시스템의 보안성을 재평가하는 연구들이 활발히 수행되고 있다. NIST는 대칭키 암호 시스템에 대한 양자 후 보안 강도에 평가에 Grover 알고리즘의 적용 비용을 채택하고 있다. Grover 알고리즘이 대칭키 암호 시스템의 보안성을 절반으로 줄일 수 있는 시점에서 중요한 건 공격 비용이다. 본 논문에서는 경량블록암호 SPECK 양자 회로 최적화 구현을 제시한다. ARX 구조의 SPECK에 대해 최적의 양자 덧셈기를 채택하고 병렬 덧셈을 수행한다. 그 결과, 최신 구현물과 비교하여 depth 측면에서 56%의 성능향상을 제공한다. 최종적으로, 제시하는 SPECK 양자 회로를 기반으로 Grover 알고리즘 적용 비용을 추정하고 양자 후 보안 강도를 평가한다.

Heterojunction Quantum Dot Solar Cells Based on Vertically Growth TiO2 Anatase Nanorod Arrays with Improved Charge Collection Property

  • Chung, Hyun Suk;Han, Gill Sang;Park, So Yeon;Lee, Dong Geon;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.466.2-466.2
    • /
    • 2014
  • The Quantum dot (QD) solar cells have been under active research due to their high light harvesting efficiencies and low fabrication cost. In spite of these advantages, there have been some problems on the charge collection due to the limitation of the diffusion length. The modification of advanced nanostructure is capable of solving the charge collection problem by increasing diffusion length of electron. One dimensional nanomaterials such as nanorods, nanowires, and nanotubes may enhance charge collection efficiency in QD solar cells. In this study, we synthesized $TiO_2$ anatase nanorod arrays with length of 200 nm by two-step sol-gel method. The morphology and crystal structure for the nanorod were characterized by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The anatase nanorods are single-crystalline and possess preferred orientation along with (001) direction. The photovoltaic properties for the heterojunction structure QD solar cells based on the anatase nanorod were also characterized. Compared with conventional $TiO_2$ nanoparticle based QD solar cells, these nanostructure solar cells exhibited better charge collection properties due to long life time measured by transient open circuit studies. Our findings demonstrate that the single crystalline anatase nanorod arrays are promising charge transport semiconductors for heterojunction QD solar cells.

  • PDF

In2S3 Co-Sensitized PbS Quantum Dot Solar Cells

  • Basit, Muhammad Abdul;Park, Tae Joo
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.273-273
    • /
    • 2014
  • Quantum-dot sensitized solar cells (QDSCs) are an emerging class of solar cells owing to their easy fabrication, low cost and material diversity. Despite of the fact that the maximum conversion efficiency of QDSCs is still far less than that of Dye-Sensitized Solar Cells (>12 %), their unique characteristics like Multiple Exciton Generation (MEG), energy band tune-ability and tendency to incorporate multiple co-sensitizers concurrently has made QDs a suitable alternative to expensive dyes for solar cell application. Lead Sulfide (PbS) Quantum dot sensitized solar cells are theoretically proficient enough to have a photo-current density ($J_{sc}$) of $36mA/cm^2$, but practically there are very few reports on photocurrent enhancement in PbS QDSCs. Recently, $Hg^{2+}$ incorporated PbS quantumdots and Cadmium Sulfide (CdS) co-sensitized PbS solarcells are reported to show an improvement in photo-current density ($J_{sc}$). In this study, we explored the efficacy of $In_2S_3$ as an interfacial layer deposited through SILAR process for PbS QDSCs. $In_2S_3$ was chosen as the interfacial layer in order to avoid the usage of hazardous CdS or Mercury (Hg). Herein, the deposition of $In_2S_3$ interfacial layer on $TiO_2$ prior to PbS QDs exhibited a direct enhancement in the photo-current (Isc). Improved photo-absorption as well as interfacial recombination barrier caused by $In_2S_3$ deposition increased the photo-current density ($J_{sc}$) from $13mA/cm^2$ to $15.5mA/cm^2$ for single cycle of $In_2S_3$ deposition. Increase in the number of cycles of $In_2S_3$ deposition was found to deteriorate the photocurrent, however it increased $V_{oc}$ of the device which reached to an optimum value of 2.25% Photo-conversion Efficiency (PCE) for 2 cycles of $In_2S_3$ deposition. Effect of Heat Treatment, Normalized Current Stability, Open Circuit Voltage Decay and Dark IV Characteristics were further measured to reveal the characteristics of device.

  • PDF