• Title/Summary/Keyword: Quantitative XRD

Search Result 89, Processing Time 0.024 seconds

Effects of Aging on Properties of MgO-Partially Stabilized Zirconia (마그네시아 부분안정화 지르코니아 소결체의 특성에 미치는 열처리 효과)

  • 정형진;오영제;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.3
    • /
    • pp.243-250
    • /
    • 1987
  • The effects aging on some properties and thermal-shock behavior of zirconia partially stabilized with 9 mol% MgO (9MZ) were studied. 9MZ specimens were aged over $1200^{\circ}$-$1400^{\circ}C$ for 12hours subsequently, after sintering at $1650^{\circ}C$ for 4 hours. Fracture strength(both before and after thermal-shock test), linear thermal expansion, monoclinic fraction and phase transition by XRD, density, galvanic potential and microstructure were measured. Quantitative chemical analysis around the grain-boundary of the specimen aged at $1350^{\circ}C$ was also conducted by EDX. The aging of 9MZ specimen causes a thermal decomposition of cubic-$ZrO^{2}$ into the formation metastable tetragonal-$ZrO^{2}$ and MgO. The former increases the residual strength after thermal-shock test and the latter improves the thermal-shock resistance due to thermal conduction through the continuous magnesia phase and the formation of monoclinic phase content in matrix were increased with decreasing the aging temperature from $1400^{\circ}C$ to $1200^{\circ}C$. Galvanic potential of the aged specimen exhibited a proper emf characteristic.

  • PDF

Use of Flue Gas Desulfurization Gypsum as an Activator for a Ground Granulated Blast Furnace Slag (고로슬래그 자극재로써 건식 및 습식 배연탈황석고의 활용가능성 평가)

  • Lee, Hyun-Suk;Kim, Ji-Hyun;Lee, Jae-Yong;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.4
    • /
    • pp.313-320
    • /
    • 2017
  • Flue gas desulfurization gypsum(FDG) is produced when removing sulfur oxides from combustion gas generated by coal power plant. However, the recycling of FDG is still limited to the certain purposes. In order to expand the possible application of FDG, this study aims to utilize FDG as an activator for ground granulated blast furnace slag. FDG produced by dry- and wet-process were used for the experiments. Slag paste specimens were produced by mixing with deionized water and simulated pore solution, and the role of FDG as an activator for blast furnace slag was evaluated using hydration study by XRD analysis and compressive strength development. According to the results, dry-type FDG was found to work as an activator for blast furnace slag without the presence of soluble alkalis. However, wet-type FDG needs assistance by soluble alkalis in order to work as an activator for blast furnace slag. It was also found that the substitution of dry- and wet-type FDG into blast furnace slag can increase the 28 day compressive strength of slag paste. It is expected that efficient and economical recycling of FDG will be possible if quantitative analysis of strength enhancement according to substitution rate of both dry- and wet-type FDG.

Petrological and mineralogical characteristics of the rocks constituting the Sungryemun (South Gate) (숭례문 구성 석재의 암석학적 및 광물학적 특징)

  • 박찬수;이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.196-206
    • /
    • 2003
  • The geochemical and mineralogical investigation on the rocks and repair material comprising of the Sungryemun (The 1st National Treasure) has been made. Rock of the Sungryemun is highly weathered coarse-grained calc-alkali granite. The rock consists mainly of quartz, perthite, plagioclase and biotite with small amounts of orthoclase, muscovite, chlorite and sericite, which are major weathering products from perthite. For obtaining informations about degree of weathering, mineral composition of the original rock calculated by CIPW norm and weathered rock composition determined by XRD quantitative analysis were plotted on a ternary diagram of quartz-potash feldspar-plagioclase. Original rock compositions are plotted on the central granite area. whereas weathered ones are plotted on the granite area close to quartz. The result means that quartz is more abundant in weathered rock, due to selective chemical weathering of potash feldspar and plagioclase over quartz. On the whole, surface of the rocks were black-coated, exfoliated and highly fractured due to the physical and chemical weathering and heavy load has made the cracks in the lower parts of the stone construction. Also, cement and nails, which was used as repair material, during the repair work in the early 1960's, has accelerated the weathering process. Furthermore, weathered conditions of repair materials are very severe. Therefore, it is very urgent to establish of the conservation plan for the Sungryemun.

Characteristic and Adhesive Strength Change by Heat Treatment of the Plasma Sprayed $ZrO_{2}$- Thermal Barrier Coatings(TBC) (플라즈마 용사된 $ZrO_{2}$-단열 코팅층의 특성 및 열처리에 따른 접합강도변화)

  • Kim, Byoung-Hee;Suhr, Dong-Soo
    • Korean Journal of Materials Research
    • /
    • v.8 no.6
    • /
    • pp.505-512
    • /
    • 1998
  • In this study, two-layer thermal barrier coatings composed of plasma sprayed 0.3mm $ZrO_2(8wt% Y_2o_3)$ ceramic coating layer and O.lmm $NiCrAlCoY_20_3$ bond coating layer on AISI 316 were investigated microstructure of the coating, oxidation of the metallic bond coating and adhesive strength to evaluate the durability of coating layer after cyclic and isothermal test at 90$0^{\circ}C$. And quantitative phase analysis of $ZrO_2(8wt% Y_2o_3)$ ceramic coating was performed as a function of thermal exposure time using XRD technique. The results showed that the amount of m - 2rO, phase in the coating was slightly increased with increasing thermal exposure time at 90$0^{\circ}C$. The c/a ratio of t' - $ZrO_2$ in the as-sprayed coating was 1.0099 and slightly increased to 1.0115 after 100 hours heat treatment. It was believed that $Y_2O_3$ in high yttria tetragonaJ(t') was transformed to low yttria tetragonaJ(t) by $Y_2O_3$ diffusion with increasing thermal exposure time. The adhesive strength was gradually decreased as thermal exposure time increased. After the isothermal test, the failure predominantly occured in ceramic coating layer. On the other hand. the specimens after cyclic thermal test were mostly failed at bond coating/ceramic coating interface. The failure was oeeured by decreasing the bond strength between bond coating and oxide scale which were formed by oxidation of the metallic elements within bond coating and by thermal stress due to thermal expansion mismatches between the oxide scale and ceramic coating.

  • PDF

Phase evaluation of Fe/Co pigments coated porcelain by rietveld refinement (리트벨트 정밀화법에 의한 Fe/Co 안료가 코팅된 도자기의 상분석)

  • Nam-Heun Kim;Kyung-Nam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.5
    • /
    • pp.174-180
    • /
    • 2023
  • Porcelain (white ware, celadon ware) coated with a ferrous sulfate and ferrous/cobalt sulfate was sintered at 1250℃. The specimens were investigated by HR-XRD, FE-SEM, HR-EDS, and UV-vis spectrophotometer. Through X-ray rietveld quantitative analysis, quartz and mullite were found to be the main phases for white ware, and mullite and plagioclase were found to be the main phases for celadon ware. When the pigment of ferrous/cobalt sulfate was applied, were identified as an andradite phase for celadon ware and a spinel phase for the white ware, and the amorphous phase, respectively. The L* value, which was the brightness of the specimen, was 72.01, 60.92 for white ware and celadon ware, respectively. The ferrous and ferrous/cobalt pigment coated porcelain had L* values of 44.89, 52.27 for white ware and celadon ware, respectively; with a* values of 2.12, 1.40, an d at b* values of 1.45 and 13.79. As for the color of the specimens, it was found that the L* value was greatly affected by the white ware, and the b* value differed greatly depending on the clay. It was thought to be closely related to the production of the secondary phase such as Fe2O3 and andradite phase produced in the surface layer.

Research of Corrosion Control Technology for the Product Water of SWRO(Seawater Reverse Osmosis) by using liquid lime (액상소석회를 이용한 SWRO 생산수의 부식제어 연구)

  • Kim, Min-Chul;Hwang, Kyu-Won;Woo, Dal-Sik;Yoon, Seok-Min;Kwak, Myung-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.529-536
    • /
    • 2011
  • In this study, we confirmed that the SWRO(Sea Water Reverse Osmosis) production water has more hard corrosiveness than the tap water by fundamental experiment. According to the result, the target of this study was aimed at developing maintenance and anti-corrosion method. In the early stages of the research, batch tests using mild steel coupons and electrochemical experiments were applied to compare the corrosiveness between SWRO production water and the tap water. After then, two corrosion control methods for SWRO production water were applied. Liquid lime($Ca(OH)_2$) and Carbon Dioxide($CO_2$) were inserted and compared with the combination of liquid lime with phosphate corrosion inhibitor and carbon dioxide. The water qualities were evaluated through LSI(Langelier Saturation Index) and proper injection ratio was deduced by the result. Since then, simulated loop system test were performed to evaluate anti-corrosion effect depending on corrosion inhibitors. Subsequently, carbon steel pipes equipped at the loop system were detached for SEM, EDX and XRD analysis to acquire quantitative and qualitative data of the major corrosion products inside the pipes. In conclusion, the controled groups with anti-corrosion techniques applied were effective by appearing 97.4% and 90.9% of improvements in both case of liquid lime and the liquid lime with a phosphate corrosion Inhibitor. furthermore, major components of scale were iron oxides, on the other hand, protective effect of film formation by calcium carbonate($CaCO_3$) could be confirmed.

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.

A Conversion of AFm Phases by Addition of CaCO3, CaCl2 and CaSO4 · 2H2O (CaCO3, CaCl2 및 CaSO4 · 2H2O 첨가에 의한 AFm상의 변화)

  • 이종규;추용식
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.1
    • /
    • pp.24-30
    • /
    • 2003
  • A formation and conversion of AFm phases decisively play role in the hydration, hardening and corrosion processes of various cement. In this study, the conversion of Alumino-Ferrite Monohydrates(AFm) phases under the addition of $CaCO_3,;CaCl_2;and;CaSO_4{cdot}2H_2O$was investigated by the XRD quantitative analysis. The thypical AFm phases are $M_S(monosulfoaluminate),;M_C(monocarboaluminate);and;M_{Cl}(monochloroaluminate and also Called Friedel's salts)$in this cementitious system, The conversion reaction were not occurred in $M_C-CaCO_3,;M_{Cl}-CaCO_3$ and $M_{Cl}-CaCl_2$system. However, in $M_S-CaCO_3$ system, ettringite and $monocarboaluminate(M_C)$ were formed. In $M_S-CaCl_2;system;M_S$ was transformed to Friedel's $salts(M_{Cl})$ and ettringite was formed. In the case of $CaSO_4{cdot}2H_2O$ addition, all AFm $phases(M_S,;M_C;and;M_{Cl})$ were transformed to ettringite. The order of stabilization of AFm phases under $CaCO_3,;CaCl_2;and;CaSO_4{cdot}2H_2O$ was as follows : $M_S< M_C