• Title/Summary/Keyword: Quantified risk assessment

Search Result 57, Processing Time 0.021 seconds

A Study on the Feasibility of Evaluating the Complexity of KTX Driving Tasks (KTX 운전직무에 대한 복잡도 평가 - 타당성 연구)

  • Park, Jin-Kyun;Jung, Won-Dea;Jang, Seung-Cheol;Ko, Jong-Hyun
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.5
    • /
    • pp.744-750
    • /
    • 2009
  • According to the result of related studies, the degradation of human performance has been revealed as one of the most significant causes resulting in the safety of any human-involved system. This means that preventing the occurrence of accidents/incidents through avoiding the degradation of human performance is prerequisite for their successive operation. To this end, it is necessary to develop a plausible tool to evaluate the complexity of a task, which has been known as one of the decisive factors affecting the human performance. For this reason, in this paper, the complexity of tasks to be conducted by KTX drivers was quantified by TACOM measure that is enable to quantify the complexity of proceduralized tasks being used in nuclear power plants. After that, TACOM scores about the tasks of KTX drivers were compared with NASA-TLX scores that are responsible for the level of a subjective workload to be felt by KTX drivers.

Determination of Ceftiofur Residues by Simple Solid Phase Extraction Coupled with Liquid Chromatography-Tandem Mass Spectrometry in Eel, Flatfish, and Shrimp

  • Kim, Joohye;Shin, Dasom;Kang, Hui-Seung;Lee, Eunhye;Choi, Soo Yeon;Lee, Hee-Seok;Cho, Byung-Hoon;Lee, Kang-Bong;Jeong, Jiyoon
    • Mass Spectrometry Letters
    • /
    • v.10 no.2
    • /
    • pp.43-49
    • /
    • 2019
  • The aim of this study was conducted to develop an analytical method to determine the concentration of ceftiofur residue in eel, flatfish, and shrimp. For derivatization and extraction, the sample was hydrolyzed with dithioerythritol to produce desfuroylceftiofur, which was then derivatized by iodoacetamide to obtain desfuroylceftiofur acetamide. For purification, the process of solid phase extraction (Oasis HLB) was used. The target analytes were confirmed and quantified in $C_{18}$ column using liquid chromatography-tandem mass spectrometry with 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B) as the mobile phase. The linearity of the standard calibration curve was confirmed by a correlation coefficient, $r^2>0.99$. The limit of quantification for ceftiofur was 0.002 mg/kg; the accuracy (expressed as the average recoveries) was 80.6-105%; the precision (expressed as the coefficient of variation) was below 6.3% at 0.015, 0.03, and 0.06 mg/kg. The validated method demonstrated high accuracy and acceptable sensitivity to meet the Codex guideline requirements. The developed method was tested using market samples. As a results, ceftiofur was detected in one sample. Therefore, it can be applied to the analysis of ceftiofur residues in fishery products.

Case Study on the Analysis of Disaster Vulnerabilities (Focused on the Fire & Explosion in the N-Industrial Complex) (재난 취약성 분석에 관한 사례연구(N공단의 화재·폭발을 중심으로))

  • Ha, Kag Cheon
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.94-100
    • /
    • 2021
  • In general, the industrial complex is a place where factories of various industries are concentrated. It is only as efficient as it is designed. However, the risks vary as there are various industries. These features are also associated with various types of disasters. The dangers of natural disasters such as a typhoon, flood, and earthquake, as well as fire and explosions, are also latent. Many of these risks can make stable production and business activities difficult, resulting in massive direct and indirect damage. In particular, decades after its establishment, the vulnerabilities increase even more as aging and small businesses are considered. In this sense, it is significant to assess the vulnerability of the industrial complex. Thus analysing fire and explosion hazards as stage 1 of the vulnerability evaluation for the major potential disasters for the industrial complex. First, fire vulnerabilities were analyzed quantitatively. It is displayed in blocks for each company. The assessment block status and the fire vulnerability rating status were conducted by applying the five-step criteria. Level A is the highest potential risk step and E is the lowest step. Level A was 11.8% in 20 blocks, level B was 22.5% in 38 blocks, level C was 25.4% in 43 blocks, level D was 26.0% in 44 blocks, and level E was 14.2% in 24 blocks. Levels A and B with high fire vulnerabilities were analyzed at 34.3%. Secondly, the vulnerability for an explosion was quantitatively analyzed. Explosive vulnerabilities were analyzed at 4.7% for level A with 8 blocks, 3.0% for level B with 5, 1.8% for level C with 3, 4.7% for level D with 8, and 85.8% for level E with 145. Levels A and B, which are highly vulnerable to explosions, were 7.7 %. Thirdly, the overall vulnerability can be assessed by adding disaster vulnerabilities to make future assessments. Moreover, it can also assist in efficient safety and disaster management by visually mapping quantified data. This will also be used for the integrated control center of the N-Industrial Complex, which is currently being installed.

The Analysis of Maturity on Implementation of Safety and Health Management System in a Construction Company (건설업 안전보건경영시스템 실행의 성숙도 분석)

  • Oh, Byung Sub;Kwon, Chang Hee
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.3
    • /
    • pp.310-318
    • /
    • 2012
  • Actual condition by items based on the level of execution of Construction Company certified by Construction Safety and Health Management Systems (KOSHA 18001) was investigated, analyzed and evaluated reflecting various opinions fincluding safety experts, top management, audit experts, and construction engineers. Currently, the maintenance is being managed through internal audit after the safety and health management system has been certified, but it is difficult to identify the degree of continuous improvement. In order to present the standards to see the level of quantified system, this study was conducted. The purpose of this study is to present the system maturity evaluation tool to be used to reduce occupational accidents through proper establishment and continuous improvement of national health and safety management system. Results of this study are summarized through identification of current condition of implementation of KOSHA 18001 system, development of maturity measurement tool and verification as follows: First, priority of implementation for activities of headquarters and on-site was determined by importance of activities such as the risk assessment, safety and health accident prevention activities, performance assessment and monitoring, resource management and support, and management review and improvement in order. In addition, the expert group presented that association with continuous improvement activities could establish the system by presenting strengths, weaknesses and improvement subjects of system.

External Cost Assessment for Nuclear Fuel Cycle (핵연료주기 외부비용 평가)

  • Park, Byung Heung;Ko, Won Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.4
    • /
    • pp.243-251
    • /
    • 2015
  • Nuclear power is currently the second largest power supply method in Korea and the number of nuclear power plants are planned to be increased as well. However, clear management policy for spent fuels generated from nuclear power plants has not yet been established. The back-end fuel cycle, associated with nuclear material flow after nuclear reactors is a collection of technologies designed for the spent fuel management and the spent fuel management policy is closely related with the selection of a nuclear fuel cycle. Cost is an important consideration in selection of a nuclear fuel cycle and should be determined by adding external cost to private cost. Unlike the private cost, which is a direct cost, studies on the external cost are focused on nuclear reactors and not at the nuclear fuel cycle. In this research, external cost indicators applicable to nuclear fuel cycle were derived and quantified. OT (once through), DUPIC (Direct Use of PWR SF in CANDU), PWR-MOX (PWR PUREX reprocessing), and Pyro-SFR (SFR recycling with pyroprocessing) were selected as nuclear fuel cycles which could be considered for estimating external cost in Korea. Energy supply security cost, accident risk cost, and acceptance cost were defined as external cost according to precedent and estimated after analyzing approaches which have been adopted for estimating external costs on nuclear power generation.

Assessment of the impact of climate variability on runoff change of middle-sized watersheds in Korea using Budyko hypothesis-based equation (Budyko 가설 기반 기후 탄력성을 고려한 기후변동이 우리나라 중권역 유출량 변화에 미치는 영향 평가)

  • Oh, Mi Ju;Hong, Dahee;Lim, Kyung Jin;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.4
    • /
    • pp.237-248
    • /
    • 2024
  • Watershed runoff that is an important component of the hydrological processes has been significantly altered by climate variability and human activities in many watersheds around the world. It is important to investigate the impacts of climate variability and human activities on watershed runoff change for water resource management. In this study, using watershed runoff data for 109 middle-sized watersheds in Korea, the impacts of climate variability and human activities on watershed runoff change were quantitatively evaluated. Using the Pittitt test, the analysis period was divided into two sub-periods, and the impacts of climate variability and human activities on the watershed runoff change were quantified using the Budyko hypothesis-based climate elasticity method. The overall results indicated that the relative contribution of climate variability and human activities to the watershed runoff change varied by middle-sized watersheds, and the dominant factors on the watershed runoff change were identified for each watershed among climate variability and human activities. The results of this study enable us to predict the watershed runoff change considering climate variability and watershed development plans, which provides useful information for establishing a water resource management plan to reduce the risk of hydrological disasters such as drought or flood.

Development and validation of an analytical method for fungicide fenpyrazamine determination in agricultural products by HPLC-UVD (HPLC-UVD를 이용한 살균제 fenpyrazamine의 시험법 개발 및 검증)

  • Park, Hyejin;Do, Jung-Ah;Kwon, Ji-Eun;Lee, Ji-Young;Cho, Yoon-Jae;Kim, Heejung;Oh, Jae-Ho;Rhee, Kyu-Sik;Lee, Sang-Jae;Chang, Moon-Ik
    • Analytical Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.172-180
    • /
    • 2014
  • Fenpyrazamine which is a pyrazole fungicide class for controlling gray mold, sclerotinia rot, and Monilinia in grapevines, stone fruit trees, and vegetables has been registered in republic of Korea in 2013 and the maximum residue limits of fenpyrazamine is set to grape, peach, and mandarin as 5.0, 2.0, and 2.0 mg/kg, respectively. Very reliable and sensitive analytical method for determination of fenpyrazamine residues is required for ensuring the food safety in agricultural products. Fenpyrazamine residues in samples were extracted with acetonitrile, partitioned with dichloromethane, and then purified with silica-SPE cartridge and eluted with hexane and acetone mixture. The purified samples were determined by HPLC-UVD and confirmed with LC-MS and quantified using external standard method. Linear range of fenpyrazamine was between $0.1{\sim}5.0{\mu}g/mL$ with the correlation coefficient (r) 0.999. The average recovery ranged from 71.8 to 102.7% at the spiked level of 0.05, 0.5, and 5.0 mg/kg, while the relative standard deviation was between 0.1 and 7.3%. In addition, limit of detection and limit of quantitation were 0.01 and 0.05 mg/L, respectively. The results revealed that the developed and validated analytical method is possible for fenpyrazamine determination in agricultural product samples and will be used as an official analytical method.