• Title/Summary/Keyword: Quality monitoring stations

Search Result 210, Processing Time 0.026 seconds

Characterization of Secondary Exposure to Chemicals and Indoor Air Quality in Fire Station (소방서 실내공간의 화학적 유해인자 2차노출과 실내공기질 특성)

  • Kim, Soo Jin;Ham, Seunghon;Jeon, Jeong Seok;Kim, Won
    • Fire Science and Engineering
    • /
    • v.33 no.4
    • /
    • pp.140-151
    • /
    • 2019
  • It is to assess the indoor air quality of the chemical hazardous materials exposed to the fire after firefighters returned to the fire scene. The research subject randomly selected four fire stations located in Seoul, Korea. Two fire stations were set up as control groups after the return of the firefighting activities at the actual fire scene, and two other fire stations were set up as control groups to measure the air quality of the room at normal levels regardless of the action. We conducted 24-hour monitoring for all fire accidents that occurred in Seoul Metropolitan using fire safety map computer system. Also, indoor air quality was measured immediately after homecoming if the experiment group was to be dispatched due to an accident of intermediate or larger scale. 11 hazardous substance items such as fine dust, formaldehyde, volatile organic compounds, PAH, VCM, acidity, asbestos, CO2, NO2, O3 were measured according to the process test method. Three of 11 types of harmful substances exceeded domestic and foreign standards, and one of them was found to be close to foreign standards. In particular, total volatile organic compounds, carbon dioxide and sulfuric acids were 2.5 times, 2.2 times and 1.1 times higher than the standard. Also, for formaldehyde and sulfuric acid, it was measured higher in the control group than in the case group. This findings could be used in policies to improve indoor air quality in the fire station of the Seoul Metropolitan Government.

The Wireless Network Optimization of Power Amplification via User Volume in the Microcell Terrain

  • Guo, Shengnan;Jiang, Xueqin;Zhang, Kesheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2581-2594
    • /
    • 2018
  • The microcell terrain is the most common wireless network terrain in our life. In order to solve wireless network optimization of weak coverage in the microcell terrain, improve call quality and reduce the cost of the premise, power amplifiers in base stations should be adjusted according to user volume. In this paper, characteristics of microcell topography are obtained after analysis. According to the topography characteristics of different microcells, changes in the number of users at different times have been estimated, meanwhile, the number of scatter users are also obtained by monitoring the PCCPCH RSCP and other parameters. Then B-Spline interpolation method has been applied to scatter users to obtain the continuous relationship between the number of users and time. On this basis, power amplification can be chosen according to changes in the number of users. The methods adopted by this paper are also applied in the engineering practice, sampling and interpolation are used to obtain the number of users at all times, so that the power amplification can be adjusted by the number of users in a microcell. Such a method is able to optimize wireless network and achieve a goal of expanding the area of base stations, reduce call drop rate and increase capacity.

Effect of major pollution sources on algal blooms in the Seungchon weir and Juksan weir in the Yeongsan River using EFDC (EFDC를 이용한 영산강 주요 오염 부하 저감에 따른 승촌보 및 죽산보 녹조 현상 개선 효과 분석)

  • Kim, Jinsoo;Kim, Jaeyoung;Seo, Dongil
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.5
    • /
    • pp.369-381
    • /
    • 2020
  • In this paper, observed water quality, algal blooms and flow rates in the Yeongsan River and its boundaries including 8 tributaries and 2 wastewater treatment plants for two years of 2018-2019 were analyzed. It seems effects of non-point source load inputs from basin areas to the river may be significant though the field data availability was limited. The EFDC model was calibrated against data collected from 6 water level monitoring stations and 6 water quality monitoring stations, respectively, in the study area. Water quality improvement scenarios were developed assuming 50% and 75% reductions of major pollution sources including treatment plants and tributaries. The developed scenarios were applied to the EFDC model to estimate effects on algal bloom occurrences in the Seungchon weir and Juksan weir. Improvement of the effluent of Gwangju 1 WWTP by 75% did not show any effect on algal blooms for two weir locations. The major tributary affecting algal blooms in the Seungchon weir was the Hwangryong River. The Jisuk stream was found as the most important tributary for the Juksan weir followed by the effect of the Hwangryong River. Though it seems other scattered small nonpoint source load input to the Yeongsan river also seem to be important, it was not possible to reflect their effects appropriately due to field data availability.

The Evaluation of Water Quality in Coastal Sea of Saemangeum by Chemical Environmental factors (새만금 하구역의 이화학적 환경요인에 따른 수질 평가)

  • Kim, Jae-Ok;Kim, Won-Jang;Jo, Kuk-Hyun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.57-65
    • /
    • 2007
  • The objective of this study was to evaluate chemical water quality by hourly monitoring(25hr) of Saemangeum esturary. For this study, we selected 2 sites like a Mangyong Bridge(St. 6) and Dongjin Bridge(St. 7). Inflow of salt water was not detected during low tide(maximum 553, 508cm) of all stations, while the salinity rises were detected in spring tide(750cm). When 602m of maximum tide was reached, salinity concentration was increased at St. 7, while there was no change in St. 6. Therefore, We know that salinity variation is greatly influenced by tide height at survey site. Also, significant variance of salinity(p<0.05) was found between St. 6 and St. 7 because dike construction made the flood tide move into the Dongjin river. Total suspened solids(TSS) concentration was increased because of the river runoff at St. 6, and also the turbulance and resuspension according to salt intrusion at St. 7. During the high tide, the water discharge from the sea seemed to dilute the nutrient but to elevate TSS concentration in St. 7. Silicate and nitrate concentrations in the studied site were decreased by the mixing of sea water, whereas the evident trend of phosphate concentration was not found. This result can be explained by the phosphorus condition. Phosphorus exists inactive when it is affected by hydrated iron and adsorbed onto suspended matters. Compared to the environmental conditions of the St. 6 and St. 7, physical factors such as temperature, dissolved oxygen and TSS have statistically no significant difference(p<0.001), but nutrient concentrations were higher at St. 6 than St. 7. It could be suggested from these results that it is important to control the discharge of fresh water by sewage treatment plants located in St. 6 for water quality management.

Patterns and Trends of Water Level and Water Quality at the Namgang Junction in the Nakdong River Based on Hourly Measurement Time Series Data (낙동강 남강 합류부 수위와 수질 패턴 및 추세)

  • Yang, Deuk Seok;Im, Teo Hyo;Lee, In Jung;Jung, Kang Young;Kim, Gyeong Hoon;Kwon, Heon Gak;Yoo, Je-Chul;Ahn, Jung Min
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.63-74
    • /
    • 2018
  • As part of the Four Major Rivers Restoration Project, multifunctional weirs have been constructed in the rivers and operated for river-level management. As the weirs play a role in draining water from tributaries, the aim of this study was to determine the influence of the weirs on the water level of the Nam River, which is one of the Nakdong River's tributaries. Self-organizing maps (SOMs) and a locally weighted scatterplot smoothing (LOWESS) technique were applied to analyze the patterns and trends of water level and quality of the Nakdong River, considering the operation of the Changnyeong-Haman weir, which is located where the Nam River flows into the Nakdong River. The software program HEC-RAS was used to find the boundary points where the water is well drained. Per the study results at the monitoring points ranging between the junction of the two rivers and 17.5 km upstream toward the Nam River, the multifunctional weir influenced the water level at the Geoyrong and Daesan observation stations on the Nam River and the water quality based on automatic monitoring at the Chilseo station on the Nakdong River was affected strongly by the Nakdong River and partly by the Nam River.

Three-dimensional Algal Dynamics Modeling Study in Lake Euiam Based on Limited Monitoring Data (제한된 측정 자료 기반 의암호 3차원 조류 예측 모델링 연구)

  • Choi, Jungkyu;Min, Joong-Hyuk;Kim, Deok-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.2
    • /
    • pp.181-195
    • /
    • 2015
  • Algal blooms in lakes are one of major environmental issues in Korea. A three-dimensional, hydrodynamic and water quality model was developed and tested in Lake Euiam to assess the performance and limitations of numerical modeling with multiple algal groups using field data commonly collected for algal management. In this study, EFDC was adopted as the basic model framework. Simulated vertical profiles of water temperature, dissolved oxygen and nutrients monitored at five water quality monitoring stations from March to October 2013, which are closely related to algal dynamics simulation, showed good agreement with those of observed data. The overall spatio-temporal variations of three algal groups were reasonably simulated against the chlorophyll-a levels of those estimated from the limited monitoring data (chlorophyll-a level and cell numbers of algal species) with the RMSEs ranging from 2.6 to $17.5mg/m^3$. Also, note that $PO_4-P$ level in the water column was a key limiting factor controlling the growth of three algal groups during most of simulation period. However, the algal modeling results were not fully attainable to the levels of observation during short periods of time showing abrupt increase in algae throughout the lake. In particular, the green algae/cyanobacteria and diatom simulations were underestimated in late June to early July and early October, respectively. The results shows that better understanding of internal algal processes, neglected in most algal modeling studies, is necessary to predict the sudden algal blooms more accurately because the concentrations of external $PO_4-P$ and specific algal groups originated from the tributaries (mainly, dam water releases) during the periods were too low to fully capture the sharp rise of internal algal levels. In this respect, this study suggests that future modeling efforts should be focused on the quantification of internal cycling processes including vertical movement of algal species with respect to changes in environmental conditions to enhance the modeling performance on complex algal dynamics.

Spatiotemporal Variations of Marine Environmental Characteristics in the Middle East Coast of Korea in 2013-2014 (2013-2014년 한국 동해중부연안 해양환경특성의 시공간적 변화)

  • Lee, Yong-Woo;Park, Mi-Ok;Kim, Seong-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.4
    • /
    • pp.274-285
    • /
    • 2016
  • In order to elucidate the spatiotemporal variations of marine environmental parameters, we collected seawater samples in the middle east coast of Korea in 2013-2014. A high temperature and low salinity were distinctively observed in the summer and a low temperature and high salinity pattern in the winter. The temperature of the bottom water was in the range of $2^{\circ}C$ to $7^{\circ}C$, with the temperature being relatively high in the winter, while the salinity was measured to be around 34, with no large differences across the seasons. The dissolved oxygen concentrations were in the range of $7mg\;L^{-1}$ to $12mg\;L^{-1}$, and it was relatively high in May compared to other seasons. The seawater temperature and dissolved oxygen concentration at the surface layer showed a significant negative correlation in the autumn and winter seasons, based on which it is seemed that water temperature is the main factor controlling the amount of dissolved oxygen in the autumn and winter seasons. The dissolved inorganic nitrogen (DIN) and silicate (DSi) increased 11- and 7-fold, respectively, in the winter compared to the summer. The DIN to DIP (dissolved inorganic phosphorus) ratio for the surface seawater was approximately 16, but it was relatively low in the spring season. On the other hand, the DIN to DIP ratio was relatively high in the summer. Based on this, it is seemed that nitrogen and phosphorus were the growth-limiting nutrients for phytoplankton in the spring and summer, respectively. Water quality was I (excellent) ~III (medium) level at the most stations except for some stations (level IV) during the autumn season, having low dissolved oxygen saturations.

Current Status and Prospective of Hazardous VOC in Ambient Air (환경대기 중 유해성 VOC 측정에 관한 동향과 전망)

  • Seo, Young-Kyo;Chung, Sun-Ho;Baek, Sung-Ok
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.6
    • /
    • pp.734-745
    • /
    • 2011
  • In this article, we reviewed the monitoring status of hazardous VOC in ambinet air in Korea and some developed countries such as USA, Japan, and UK. In many countries, two types of VOC monitoring stations are being operated, i.e., for hazardous VOC and photochemical VOC. Each country has different target VOC but all includes benzene. Korea, Japan, and UK have a national ambient air quality standard for benzene, but no national standard has been established in the USA. For sampling of the hazardous VOC, the adsorbent method is adopted in Korea and UK, while the canister method is used in the USA. Both of adsorbent and canister methods are used in Japan. USA and UK have only non-automatic method to measure the hazardous VOC, and the individual samples are being sent to their national laboratories for integrated analysis. On the other hand, Korea and Japan have automatic and nonautomatic methods to measure the hazardous VOC. Local governments or regional environmental agencies in Korea and Japan have the authorization for the sampling and analysis of VOC. According to a field study to evaluate the performance of automatic VOC monitoring system, controlling the moisture in the air sample was identified as the most important problem. However, careful attention must be given to using a moisture removing device such as Nafyon dryer, because of unexpected artifacts formation. In order to have reliable data, it is highly recommended not only to use internal standards, but to use appropriate hydrophobic adsorbents as a cold trap in any automatic on-line VOC monitoring system.

Modeling of Water Temperature in the Downstream of Yongdam Reservoir using 1-D Dynamic Water Quality Simulation Model (1차원 동적수질모형을 활용한 용담댐 하류하천의 수온변동 모의)

  • Noh, Joonwoo;Kim, Sang-Ho;Shin, Jae-Ki
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.356-364
    • /
    • 2010
  • The chemical and biological reaction of the aquatic organism is closely related with temperature variation and water temperature is one of the most important factors that should be considered in establishing sustainable reservoir operation scheme to minimize adverse environmental impacts related with dam construction. This paper investigates temperature variation in the downstream of Yongdam Reservoir using sampled data collected from total 8 temperature monitoring stations placed along the main river and the major tributaries. Using KoRiv1, 1-dimensional dynamic water quality simulation model, temperature variation in the downstream of Yongdam Reservoir has been simulated. The simulated results were compared with sampled data collected from May 15 to August 1 2008 by applying two different temperature modeling schemes, equilibrium temperature and full heat budget method. From the result of statistical analysis, seasonal temperature variation has been simulated by applying the equilibrium temperature scheme for comparison of the difference between the reservoir operation and the natural conditions.

Air Quality Deterioration in a Pristine Area due to a Petroleum Refinery and Associated Activities

  • Handique, Devolakshi;Bhattacharyya, Krishna G.
    • Asian Journal of Atmospheric Environment
    • /
    • v.11 no.4
    • /
    • pp.254-269
    • /
    • 2017
  • The work describes an assessment of the major air pollutants, $NO_2$, $SO_2$, CO, $O_3$, $NH_3$, coarse and fine particulate matter ($PM_{10}$, $PM_{2.5}$) in ambient air in and around a 3 million tonne Petroleum Refinery and the possible impacts on a pristine area marked by the presence of the world-famous Kajiranga National Park, a world heritage site and habitat for the most number of one-horned rhinos in the world. The Refinery is at an aerial distance of 20-25 km from the wildlife habitat. The assessment is based on regular monitoring at four stations around the Refinery and one station near the National Park. Heavy rains during June to August influence the pollutant concentrations while at other times of the year, large traffic volume adds to the pollutant concentrations that peak during November to March, the dry months of the year. Correlation analysis by scatter technique is utilised to obtain the enhancement ratios to predict the variations in the concentrations of the pollutants and their spatial distribution. Computation of air quality index (AQI) indicates that the coarse and the fine particulates in the ambient air could be a major hazard to wildlife in the area.