Quantum-dot cellular automata (QCA) has shown great potential in the nanoscale regime as a replacement for CMOS technology. This work presents a specific approach to static random-access memory (SRAM) cell based on 2:1 multiplexer, 4-bit SRAM array, and 32-bit SRAM array in QCA. By utilizing the proposed SRAM array, a single-layer 16×32-bit SRAM with the read/write capability is presented using an optimized signal distribution network (SDN) crossover technique. In the present study, an extremely-optimized 2:1 multiplexer is proposed, which is used to implement an extremely-optimized SRAM cell. The results of simulation show the superiority of the proposed 2:1 multiplexer and SRAM cell. This study also provides a more efficient and accurate method for calculating QCA costs. The proposed extremely-optimized SRAM cell and SRAM arrays are advantageous in terms of complexity, delay, area, and QCA cost parameters in comparison with previous designs in QCA, CMOS, and FinFET technologies. Moreover, compared to previous designs in QCA and FinFET technologies, the proposed structure saves total energy consisting of overall energy consumption, switching energy dissipation, and leakage energy dissipation. The energy and structural analyses of the proposed scheme are performed in QCAPro and QCADesigner 2.0.3 tools. According to the simulation results and comparison with previous high-quality studies based on QCA and FinFET design approaches, the proposed SRAM reduces the overall energy consumption by 25%, occupies 33% smaller area, and requires 15% fewer cells. Moreover, the QCA cost is reduced by 35% compared to outstanding designs in the literature.
During fast neutron imaging, besides the dark current noise and readout noise of the CCD camera, the main noise in fast neutron imaging comes from high-energy gamma rays generated by neutron nuclear reactions in and around the experimental setup. These high-energy gamma rays result in the presence of high-density gamma white spots (GWS) in the fast neutron image. Due to the microscopic quantum characteristics of the neutron beam itself and environmental scattering effects, fast neutron images typically exhibit a mixture of Gaussian noise. Existing denoising methods in neutron images are difficult to handle when dealing with a mixture of GWS and Gaussian noise. Herein we put forward a deep learning approach based on the Swin Transformer UNet (SUNet) model to remove high-density GWS-Gaussian mixture noise from fast neutron images. The improved denoising model utilizes a customized loss function for training, which combines perceptual loss and mean squared error loss to avoid grid-like artifacts caused by using a single perceptual loss. To address the high cost of acquiring real fast neutron images, this study introduces Monte Carlo method to simulate noise data with GWS characteristics by computing the interaction between gamma rays and sensors based on the principle of GWS generation. Ultimately, the experimental scenarios involving simulated neutron noise images and real fast neutron images demonstrate that the proposed method not only improves the quality and signal-to-noise ratio of fast neutron images but also preserves the details of the original images during denoising.
The Journal of the Convergence on Culture Technology
/
v.10
no.3
/
pp.801-807
/
2024
Linear motion robots are devices that perform functions such as transferring parts or positioning devices, and require high precision. In companies that develop linear robot application systems, human workers are in charge of quality control and fault diagnosis of linear robots, and the result and accuracy of a fault diagnosis varies depending on the skill level of the person in charge. Recently, there have been many attempts to utilize artificial intelligence to diagnose faults in industrial devices. In this paper, we present a system that automatically diagnoses linear rail and ball screw misalignment of a linear robot using transfer learning. In industrial systems, it is difficult to obtain a lot of learning data, and this causes a data imbalance problem. In this case, a transfer learning model configured by retraining an established model is widely used. The information obtained by using an acceleration sensor and torque sensor was used, and its usefulness was evaluated for each case. After converting the signal obtained from the sensor into a spectrogram image, the type of abnormality was diagnosed using an image recognition artificial intelligence classifier. It is expected that the proposed method can be used not only for linear robots but also for diagnosing other industrial robots.
The technical parameters and imaging interpretation criteria of the Prostate Imaging Reporting and Data System version 2 (PI-RADS v2) using multiparametric MRI (mpMRI) are updated in PI-RADS v2.1. These changes have been an expected improvement for prostate cancer evaluation, although some issues remain unsolved, and new issues have been raised. In this review, a brief overview of PI-RADS v2.1 is and several critical points are discussed as follows: the need for more detailed protocols of mpMRI, lack of validation of the revised transition zone interpretation criteria, the need for clarification for the revised diffusion-weighted imaging and dynamic contrast-enhanced imaging criteria, anterior fibromuscular stroma and central zone assessment, assessment of background signal and tumor aggressiveness, changes in the structured report, the need for the parameters for imaging quality and performance control, and indications for expansion of the system to include other indications.
Journal of the Earthquake Engineering Society of Korea
/
v.28
no.4
/
pp.183-191
/
2024
Accurate seismic vulnerability assessment requires high quality and large amounts of ground motion data. Ground motion data generated from time series contains not only the seismic waves but also the background noise. Therefore, it is crucial to determine the high-pass cut-off frequency to reduce the background noise. Traditional methods for determining the high-pass filter frequency are based on human inspection, such as comparing the noise and the signal Fourier Amplitude Spectrum (FAS), f2 trend line fitting, and inspection of the displacement curve after filtering. However, these methods are subject to human error and unsuitable for automating the process. This study used a deep learning approach to determine the high-pass filter frequency. We used the Mel-spectrogram for feature extraction and mixup technique to overcome the lack of data. We selected convolutional neural network (CNN) models such as ResNet, DenseNet, and EfficientNet for transfer learning. Additionally, we chose ViT and DeiT for transformer-based models. The results showed that ResNet had the highest performance with R2 (the coefficient of determination) at 0.977 and the lowest mean absolute error (MAE) and RMSE (root mean square error) at 0.006 and 0.074, respectively. When applied to a seismic event and compared to the traditional methods, the determination of the high-pass filter frequency through the deep learning method showed a difference of 0.1 Hz, which demonstrates that it can be used as a replacement for traditional methods. We anticipate that this study will pave the way for automating ground motion processing, which could be applied to the system to handle large amounts of data efficiently.
Third-Party awards are growing in popularity. They are the hit product of the year chosen by The Korea Economic Daily, the best 10 products of the year chosen by Sports paper, the best hit product chosen by consulting firm and the best venture company of the year chosen by Information and Communication Ministry. Then these questions may be followed. Why industry likes this type of advertisement? Does this type of advertisement influences consumers' purchase intention? And if it does, how? Many researchers have been interested in external cue of product quality by focusing research effort on brand, price, producer, warranty etc. However, important but under-explored area is the role of third-party reference for signaling product quality. This paper comes from the idea that the third-party reference may signal consumers like manufacturer brand, product brand, product price, and shop brand. We develop a related theories to address research questions and drive some research hypotheses based on the previous studies probing source credibility, attribution, and signal theory. We put more emphasis on source credibility. We conducted the research based on 3x2x2x2 between group factorial design to explore causal relationship between the third party award winning advertising(real, fictional, no) and the purchase intention of consumers exposed to other information simultaneously such as product type(experience, search), distribution channel(direct, indirect) and perceived price(high, low). Since subjects are divided into 2 groups based on the means of response without extra experimental stimulus in case of perceived price. 12 different advertisements are used for conducting this study. The results are followings. First, the source credibility of the third party goes up, consumers' purchase intention would go up. It seems that consumers think the credibility of the third-party most when they are exposed to the third party award winning advertisement. Second, the product type does moderate the relationship between the third-party award winning advertisement and purchase intention. And the type of the distribution channel also moderates this relationship. The consumers' purchase intention goes up higher when they buy experience good and there is significant difference of purchase intention when consumers are exposed to direct channel treatment condition. But, perceived price has nothing to do with the third-party winning advertisement context for raising consumer intention to buy advertised product.
Hye Ji;Sun Kyoung You;Jeong Eun Lee;So Mi Lee;Hyun-Hae Cho;Joon Young Ohm
Journal of the Korean Society of Radiology
/
v.83
no.3
/
pp.669-679
/
2022
Purpose To evaluate the feasibility of pediatric low-dose facial CT reconstructed with filtered back projection (FBP) using adequate kernels. Materials and Methods We retrospectively reviewed the clinical and imaging data of children aged < 10 years who underwent facial CT at our emergency department. The patients were divided into two groups: low-dose CT (LDCT; Group A, n = 73) with a fixed 80-kVp tube potential and automatic tube current modulation (ATCM) and standard-dose CT (SDCT; Group B, n = 40) with a fixed 120-kVp tube potential and ATCM. All images were reconstructed with FBP using bone and soft tissue kernels in Group A and only bone kernel in Group B. The groups were compared in terms of image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR). Two radiologists subjectively scored the overall image quality of bony and soft tissue structures. The CT dose index volume and dose-length product were recorded. Results Image noise was higher in Group A than in Group B in bone kernel images (p < 0.001). Group A using a soft tissue kernel showed the highest SNR and CNR for all soft tissue structures (all p < 0.001). In the qualitative analysis of bony structures, Group A scores were found to be similar to or higher than Group B scores on comparing bone kernel images. In the qualitative analysis of soft tissue structures, there was no significant difference between Group A using a soft tissue kernel and Group B using a bone kernel with a soft tissue window setting (p > 0.05). Group A showed a 76.9% reduction in radiation dose compared to Group B (3.2 ± 0.2 mGy vs. 13.9 ± 1.5 mGy; p < 0.001). Conclusion The addition of a soft tissue kernel image to conventional CT reconstructed with FBP enables the use of pediatric low-dose facial CT protocol while maintaining image quality.
Purpose: To evaluate the differences of functional imaging patterns between conventional spoiled gradient echo (SPGR) and echo planar imaging (EPI) methods in cerebral motor cortex activation. Materials and Methods: Functional MR imaging of cerebral motor cortex activation was examined on a 1.5T MR unit with SPGR (TRfrE/flip angle=50ms/4Oms/$30^{\circ}$, FOV=300mm, matrix $size=256{\times}256$, slice thickness=5mm) and an interleaved single shot gradient echo EPI (TRfrE/flip angle = 3000ms/40ms/$90^{\circ}$, FOV=300mm, matrix $size=128{\times}128$, slice thickness=5mm) techniques in five male healthy volunteers. A total of 160 images in one slice and 960 images in 6 slices were obtained with SPGR and EPI, respectively. A right finger movement was accomplished with a paradigm of an 8 activation/ 8 rest periods. The cross-correlation was used for a statistical mapping algorithm. We evaluated any differences of the time series and the signal intensity changes between the rest and activation periods obtained with two techniques. Also, the locations and areas of the activation sites were compared between two techniques. Results: The activation sites in the motor cortex were accurately localized with both methods. In the signal intensity changes between the rest and activation periods at the activation regions, no significant differences were found between EPI and SPGR. Signal to noise ratio (SNR) of the time series data was higher in EPI than in SPGR by two folds. Also, larger pixels were distributed over small p-values at the activation sites in EPI. Conclusions: Good quality functional MR imaging of the cerebral motor cortex activation could be obtained with both SPGR and EPI. However, EPI is preferable because it provides more precise information on hemodynamics related to neural activities than SPGR due to high sensitivity.
The most critical point in the medical use of radiation is to minimize the patient's entrance dose while maintaining the diagnostic function. Low-energy photons (long wave X-ray) among diagnostic X-rays are unnecessary because they are mostly absorbed and contribute the increase of patient's entrance dose. The most effective method to eliminate the low-energy photons is to use the filtering plate. The experiments were performed by observing the image quality. The skin entrance dose was 0.3 mmCu (copper) filter. A total of 80 images were prepared as two sets of 40 cuts. In the first set (of 40 cuts), 20 cuts were prepared for the non-filter set and another 20 cuts for the Cu filter of signal + noise image set. In the second set of 40 cuts, 20 cuts were prepared for the non-filter set and another 20 cuts for the Cu filter of non-signal image (noisy image) with random location of diameter 4 mm and 3 mm thickness of acryl disc for ROC signal at the chest phantom. P(S/s) and P(S/n) were calculated and the ROC curve was described in terms of sensitivity and specificity. Accuracy were evaluated after reading by five radiologists. The number of optically observable lesions was counted through ANSI chest phantom and contrast-detail phantom by recommendation of AAPM when non-filter or Cu filter was used, and the skin entrance dose was also measured for both conditions. As the result of the study, when the Cu filter was applied, favorable outcomes were observed on, the ROC Curve was located on the upper left area, sensitivity, accuracy and the number of CD phantom lesions were reasonable. Furthermore, if skin entrance dose was reduced, the use of additional filtration may be required to be considered in many other cases.
The purpose of this study was to investigate the optimal flip angle by measuring the SNR and CNR according to the angle of changes of the MRI technique using the Image J program. A total of 30 normal volunteers were assessed by using a 1.5T magnetic resonance imaging system (Philips, Medical System, Achieva). For the MRI angiography, we set the region of interest in four regions and evaluated the SNR and CNR. The statistical significance of SNR and CNR was calculated by one-way ANOVA using quantitative analysis at five different positions. The Bonferroni method was used for post-hoc analyzes. Statistical significance was determined by using ANOVA analysis at p<0.05 and Bonferroni method was used as a post-hoc analysis. The results of this study, the measurement values of ACA(SNR:$876.59{\pm}14.22$, CNR:$1999.7{\pm}12.5$), PCA(SNR:$863.48{\pm}13.29$, CNR:$1870.18{\pm}12.56$), ICA(SNR:$1116.87{\pm}08.34$, CNR:$2979.37{\pm}14.69$) and MCA(SNR:$848.66{\pm}15.25$, CNR:$2199.25{\pm}13.48$) were obtained with the high signal intensity at $25^{\circ}$(p<0.05). The values of a1, a2, a3, p1, p2, p3, m1, m2 and m3 were also the same (p<0.05). Post-hoc analysis results, There was a statistically significant difference (p=0.000) between $10^{\circ}$, $15^{\circ}$, $20^{\circ}$ on the $25^{\circ}$ reference for the flip angle, but no significant results were obtained with $30^{\circ}$(p<0.05). In concision, because the signal intensity decreased at $30^{\circ}$, this study revealed that the optimal flip angles were $25^{\circ}$ in cerebrovascular MR angiography.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.