• Title/Summary/Keyword: Quadtree plus binary tree (QTBT)

Search Result 2, Processing Time 0.015 seconds

A Fast Decision Method of Quadtree plus Binary Tree (QTBT) Depth in JEM (차세대 비디오 코덱(JEM)의 고속 QTBT 분할 깊이 결정 기법)

  • Yoon, Yong-Uk;Park, Do-Hyun;Kim, Jae-Gon
    • Journal of Broadcast Engineering
    • /
    • v.22 no.5
    • /
    • pp.541-547
    • /
    • 2017
  • The Joint Exploration Model (JEM), which is a reference SW codec of the Joint Video Exploration Team (JVET) exploring the future video standard technology, provides a recursive Quadtree plus Binary Tree (QTBT) block structure. QTBT can achieve enhanced coding efficiency by adding new block structures at the expense of largely increased computational complexity. In this paper, we propose a fast decision algorithm of QTBT block partitioning depth that uses the rate-distortion (RD) cost of the upper and current depth to reduce the complexity of the JEM encoder. Experimental results showed that the computational complexity of JEM 5.0 can be reduced up to 21.6% and 11.0% with BD-rate increase of 0.7% and 1.2% in AI (All Intra) and RA (Random Access), respectively.

Performance Analysis of Future Video Coding (FVC) Standard Technology

  • Choi, Young-Ju;Kim, Ji-Hae;Lee, Jong-Hyeok;Kim, Byung-Gyu
    • Journal of Multimedia Information System
    • /
    • v.4 no.2
    • /
    • pp.73-78
    • /
    • 2017
  • The Future Video Coding (FVC) is a new state of the art video compression standard that is going to standardize, as the next generation of High Efficiency Video Coding (HEVC) standard. The FVC standard applies newly designed block structure, which is called quadtree plus binary tree (QTBT) to improve the coding efficiency. Also, intra and inter prediction parts were changed to improve the coding performance when comparing to the previous coding standard such as HEVC and H.264/AVC. Experimental results shows that we are able to achieve the average BD-rate reduction of 25.46%, 38.00% and 35.78% for Y, U and V, respectively. In terms of complexity, the FVC takes about 14 times longer than the consumed time of HEVC encoder.