• Title/Summary/Keyword: Quadruped working robot

Search Result 4, Processing Time 0.016 seconds

The Motion Control of a Quadruped Working Robot Using Wireless Sensor Network (무선 센서 네트워크가 탑재된 사족 보행로봇 제어)

  • Seo, Kyu-Tae;Kim, Ki-Woo;Sim, Jae-Yang;Oh, Jun-Young;Lim, Sung-Duk;Lee, Bo-Hee;Kong, Jung-Shik;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.499-501
    • /
    • 2004
  • This paper deals with the implementation of a quadruped working robot using wireless sensor network with TinyOS. It is often required to install real time OS and wireless network in the mobile robot field since robots work alone without human intervention and also exchanging their information between robot systems. The suggested controller utilizes a built-in wireless network OS and makes the variance action related with human-kindly motions for a quadruped walking robot. In addition, a kinematics analysis of its structure and control architecture of robot system is suggested and verified the usefulness through the real experiment.

  • PDF

Estimation of Attitude Control for Quadruped Walking Robot Using Load Cell (로드셀을 이용한 4족 보행로봇의 자세제어 평가)

  • Eom, Han-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1235-1241
    • /
    • 2012
  • In this paper, each driving motor for leg joints on a robot is controlled by estimating the direction of the legs measuring each joint angle and attitude angle of robot. We used quadruped working robot named TITAN-VIII in order to carry out this experimental study. 4 load cells are installed under the bottom of 4 legs to measure the pressed force on each leg while it's walking. The walking experiments of the robot were performed in 8 different conditions combined with duty factor, the length of a stride, the trajectory height of the foot and walking period of robot. The validity of attitude control for quadruped walking robot is evaluated by comparing the pressed force on a leg and the power consumption of joint driving motor. As a result, it was confirmed that the slip-condition of which the foot leave the ground late at the beginning of new period of the robot during walking process, which means the attitude control of the robot during walking process wasn't perfect only by measuring joint and attitude angle for estimating the direction of the foot.

3-D Positioning Using Stereo Vision and Guide-Mark Pattern For A Quadruped Walking Robot (스테레오 시각 정보를 이용한 4각보행 로보트의 3차원 위치 및 자세 검출)

  • ;;;Zeungnam Bien
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.8
    • /
    • pp.1188-1200
    • /
    • 1990
  • In this paper, the 3-D positioning problem for a quadruped walking robot is investigated. In order to determine the robot's exterior position and orentation in a worls coordinate system, a stereo 3-D positioning algorithm is proposed. The proposed algorithm uses a Guide-Mark Pattern (GMP) specialy designed for fast and reliable extraction of 3-D robot position information from the uncontrolled working environment. Some experimental results along with error analysis and several means of reducing the effects of vision processing error in the proposed algorithm are disscussed.

  • PDF

Optimization on Working Trajectory of a Quadruped Robot Based on Jansen Mechanism (얀센 메커니즘 기반의 4 족 로봇의 보행 궤적의 최적화)

  • Bae, JoonSeok;Yu, SeongMin;Kim, MinJun;Jeong, EunSik;Han, SangMin;Hwang, WooJung;Choi, JaeNeung;Lee, ChoonYeol
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.397-403
    • /
    • 2016
  • Various walking robot platforms have been developed to carry out missions such as explorations, pass of obstacle or inspections of dangerous environments. In this work, a four legs mechanism based on Jansen mechanism is developed, which can follow a certain track and overcome obstacles. To find the ideal locus, computer programs are used such as M. sketch and Working model. Using these program tools, moderate linkage sizes are selected in Science Box. Furthermore, in order to optimize design of legs, a level average analysis is used as well as Edison S/W. Through the design optimization, improved stride of locus is found.

  • PDF