• Title/Summary/Keyword: Quadriceps muscle activation

Search Result 42, Processing Time 0.025 seconds

Effects of EMG-Biofeedback Using Closed Kinetic Chain Exercise on Q-angle and Quadriceps Muscle Activation in Patellofemoral Pain Syndrome

  • Kim, Je-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.2
    • /
    • pp.65-70
    • /
    • 2016
  • Purpose: The aim of this study was to determine the effects of electromyographic (EMG)-Biofeedback using closed kinetic chain exercise (EB-CKCE) on quadriceps angle (Q-angle) and quadriceps muscle activation and muscle activation ratio in subjects with patellofemoral pain syndrome and to provide fundamental information on rehabilitation exercise in patellofemoral pain syndrome. Methods: Thirty participants who met the criteria were included. The subjects were randomly divided into three groups: control group (Group I, n=10), semi-squat exercise group (Group II, n=10), and EMG-Biofeedback using closed kinetic chain exercise group (Group III, n=10). Intervention was provided to each group for eight weeks (three times per week; 30 minutes per day). Subjects were measured on Q-angle and quadriceps muscle activation. Results: Significant difference in Q-angle and quadriceps muscle activation was observed in groups II and III compared with control group I (p<0.01). Results of post-hoc analysis showed a significant difference in Q-angle and quadriceps muscle activation in on group III compared with groups I and II. Conclusion: Findings of this study suggest that closed kinetic chain exercise using EMG-Biofeedback that provides real-time biofeedback information on muscle contraction may have a beneficial effect on improvement of Q-angle and quadriceps muscle activation in patellofemoral pain syndrome.

The Effects of Whole Body Vibration Exercise on Jump Performance and Quadriceps Muscle Activation in Soccer Player

  • Kim, Je-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.3
    • /
    • pp.129-134
    • /
    • 2015
  • Purpose: The purpose of this study was to determine the influence of WBV exercise on CMJ and quadriceps muscle activation according to different frequency of vibration in soccer player and also to find effective frequency for leading appropriate treatment reaction. Methods: Thirty three subjects were randomly divided into three groups: the three groups are WBV group using 20 Hz frequency, WBV group using 30 Hz frequency and squat exercise group according to training method. The exercise program was conducted for six weeks. Subjects were measured on CMJ and quadriceps muscle activation. Results: Significant difference in CMJ was observed in the group I, II compared with the group III (p<0.05). Results of post-hoc, showed a significant difference in CMJ in on group I, II compared with the group III, but no a statistically significant difference between group I and II. Significant difference in quadriceps muscle activation was observed in the group I, II compared with the group III (p<0.05, p<0.01). Results of post-hoc, significant difference in quadriceps muscle activation in on group I, II compared with the group III and significant difference between group I and group II. Conclusion: This research intervened WBV for soccer players and compared the differences of CMJ and quadriceps muscle activation; as a result of the effective frequency for improving performance, there is a significant difference in CMJ and quadriceps muscle activation of WBV group with comparison of control group; and it was proved that WBV is effective using 30 Hz frequency for improving quadriceps muscle activation.

Correlation Between the Soleus and Quadriceps Femoris Muscles During Squat Exercises on Various Support Surface in Healthy Adult Males (다양한 지지면에서 스쿼트 운동 중 건강한 성인 남성의 가자미근과 넙다리네갈래근의 상관관계)

  • Sung Hyun Kim;Bo-ram Choi
    • Journal of Korean Physical Therapy Science
    • /
    • v.31 no.3
    • /
    • pp.89-99
    • /
    • 2024
  • Background: Squats are well-known for their effectiveness in strengthening the quadriceps femoris muscle. Flexibility and stability of the ankle joint are critical factors in performing squats correctly. Ankle instability can lead to injuries owing to compensatory actions. The role of the soleus muscle in maintaining ankle balance is crucial to minimize the risk of injury. Moreover, squats on unstable surfaces have gained attention for their potential to enhance balance and stability, which in turn helps prevent injuries. Therefore, this study aims to investigate the correlation between the soleus and quadriceps femoris muscles during squat exercises on various support surfaces. Design: Simple regression analysis Methods: Participants performed three different types of squats. Prior to commencing the exercises, we conducted electromyography (EMG) measurements to assess the activity of both the soleus and quadriceps femoris muscles. The order of the exercise execution was randomized. The squats were performed in a Full Squat format, and a one-minute rest was provided between each exercise type. Results: Our analysis of the results revealed significant differences in the activation levels of the soleus and quadriceps femoris across different squat types (p<.05). The regression analysis revealed an inverse relationship between the activity levels of the soleus and quadriceps femoris. Specifically, the quadriceps femoris exhibited the highest activation during squats using a wedge, while its activation was lowest during squats using the TOGU. In contrast, the soleus muscle demonstrated its highest activation during squats using the TOGU. Conclusion: Compared to traditional floor squats, the disparities in soleus and quadriceps femoris muscle activation observed during Wedge or TOGU squats can be attributed to the influence of ankle stability and balance. As the surface instability increased during squats, the soleus muscle's activity increased while the activation of the quadriceps femoris muscle decreased. These findings suggest that heightened soleus activation on unstable surfaces can significantly impact the activation of the quadriceps femoris muscle during squat exercises.

Comparison of the Changes in the Activation of the Quadriceps Muscle based on the Plantar Flexion Degree of the Ankle Joint in Healthy Young Females during the Stand-to-Sit movement

  • Sung-Min Son
    • The Journal of Korean Physical Therapy
    • /
    • v.35 no.2
    • /
    • pp.53-57
    • /
    • 2023
  • Purpose: The purpose of this study was to compare the changes in the muscle activation of the quadriceps muscle (rectus femoris, vastus lateralis, vastus medialis) during the stand-to-sit (StandTS) movement according to the plantar flexion angle of the ankle joint. Methods: A total of 22 healthy young females participated in this study. During the StandTS under the three conditions (plantarflexion angle 0°, 20°, and 45° of the ankle), electromyography (EMG) data (% maximum voluntary iso¬metric contraction) of the rectus femoris, vastus lateralis, and vastus medialis were recorded using a wireless surface EMG system. Results: There was a significant difference in the muscle activation of rectus femoris, vastus lateralis, and vastus medialis according to the plantar flexion angle (0°, 20°, and 45°) of the ankle. The muscle activation of the quadriceps was the highest at a 45° angle of plantarflexion and the lowest at 0°. One-way repeated ANOVA was used to analyze the muscle activation data of the lower extremity muscles according to the angle of the ankle joint. Conclusion: Based on the results of our study, it was confirmed that the muscle activity of the quadriceps can be increased even in the StandTS movement, which involves the eccentric contraction of the quadriceps muscle. This suggests that maintaining a plantar flexion posture for a long time, say by wearing high-heeled shoes, can quickly cause muscle fatigue in the lower-limb muscles, which can cause a decrease in balance ability leading to falls.

Isolated Activation Ratio of the Quadriceps Femoris Muscle on Different Support Surfaces During Squat Exercise (스쿼트 운동 시 지지면 변화에 따른 넙다리네갈래근의 독립활성비율)

  • Kim, Yong-Hun;Kim, Byeong-Jo;Park, Du-Jin
    • PNF and Movement
    • /
    • v.16 no.1
    • /
    • pp.125-132
    • /
    • 2018
  • Purpose: The aim of this study was to investigate the isolated activation ratio of the quadriceps femoris muscle on different support surfaces during squat exercise. Methods: Twenty participants (10 males and 10 females) voluntarily agreed to participate in the research after receiving an explanation about the purpose and process of the study. Each participant performed squat exercises on three different support surfaces (a flat surface, a form roller, and an unstable surface). Muscle activities of the rectus femoris (RF), vastus medialis (VM), and vastus lateralis (VL) were measured by electromyography. The isolated activation ratio of the quadriceps femoris muscle was calculated using the %isolation formula. Results: For the squat exercise, the %isolation value of the VM was significantly higher on the unstable surface than on the flat surface and form roller. In contrast, the %isolation values for the RF for the squat exercise were significantly higher on the flat surface and form roller than on the unstable surface. There was no significant differences in the %isolation values of the VL on the three different surfaces. Conclusion: The findings indicate that squat exercise on different surfaces results in differential activation of the quadriceps femoris muscle, which suggests that squat exercise on a multi-directional unstable surface could increase the isolated activation ratio of the VM.

Comparison of Quadriceps Femoris Muscle Activations during Wall Slide Squats (벽 미끄러짐 쪼그려 앉기 방법에 따른 넙다리네갈래근의 근활성도 비교)

  • Kim, Byeong-Jo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.4
    • /
    • pp.541-550
    • /
    • 2012
  • PURPOSE: The purpose of this study was compare quadriceps femoris muscle activity while performing wall slide squats of four methods. METHODS: Forty subjects, with no history of patellofemoral pain, quadriceps injury, or other knee injury volunteered for this study. Muscle activation of the vastus medialis obliquus, rectus femoris, vastus lateralis muscles were recorded while subjects performed 10 consecutive wall slide squats. Subjects performed the wall slide squats during four different methods: (1) basic wall slide squat, (2) keep back upright against fitness ball, (3) standing of unstable surface, (4) squeezing ball between both knees. Statistical analysis were accomplished by utilizing the one-way ANOVA(Bonferroni's post-hoc test) by SPSS 20.0 program. Significance level was set at p<.05. RESULTS: Muscle activations induced wall slide squats of four methods compared and results showed that there was significant difference only in vastus medialis obliquus and rectus femoris but there was no significant difference in vastus lateralis. The vastus medialis obliquus was significantly different only keep back upright against fitness ball at post-hoc test. The rectus femoris was significantly different keep back upright against fitness ball and standing of unstable surface at post-hoc test. CONCLUSION: Based on these results, we conclude that quadriceps femoris muscle activations are differenced by performing wall slide squats of four different methods in healthy subjects. These data suggest that for quadriceps muscle strengthening, exercise professionals can perform the wall slide squats by altering several task variables. Further research is needed to determine the exact mechanism by which quadriceps function is altered.

Effects of Altering Foot Position on Quadriceps Femoris Activation during Wall Squat Exercises

  • Qiao, Yong-Jun;Kim, Kyu-Ryeong;Kim, Myoung-Kwon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.16 no.1
    • /
    • pp.23-31
    • /
    • 2021
  • PURPOSE: This study was conducted to identify the effects of altering foot position on quadriceps femoris including vastus medialis obliques (VMO), vastus lateralis (VL) and rectus femoris (RF) activation during wall squat exercises. METHODS: All subjects (n = 15) were selected and randomly performed three kinds of wall squats: 1) GWS (General Wall Squat), 2) WSS1/4 (Wall Squat Short 1/4), and 3) WSS1/2 (Wall Squat Short 1/2). Each subject completed all three kinds of wall squatting exercises at three different times and recorded the muscle activity data of vastus medialis obliques, vastus lateralis and rectus femoris. RESULTS: Compared with GWS exercise, VMO and RF muscle activity significantly increased under WSS1/2 exercise (p < .05), while only RF muscle activity significantly increased under WSS1/4 exercise (p < .05). CONCLUSION: The results of the present study indicate that moving the foot toward the wall during wall squats has a positive effect on quadriceps activation. The exercise of wall squat short can not only be used as the lower limb muscle strengthening training for normal people, but also as the recovery training for patellofemoral pain syndrome patients in the rehabilitation stage. Besides, Anterior cruciate ligament patients can also try this exercise according to the advice of doctors and therapists.

Study on Asymmetrical EMG Activation Pattern of Selected Trunk and Thigh Muscles on Gait Velocity of Individuals With Post-Stroke Hemiparesis During Sit-to-Stand Movement (일어서기 동작시 편마비 환자의 보행 속도에 따른 체간과 하지 근 활성 형태의 비대칭성에 관한 연구)

  • Park, Hyun-Ju;Oh, Duck-Won;Choi, Sung-Jin;Jang, Hyun-Jeong;Sim, Sun-Mi;Cho, Hyuk-Shin
    • Physical Therapy Korea
    • /
    • v.19 no.2
    • /
    • pp.29-38
    • /
    • 2012
  • This study aimed to identify the asymmetry observed in the electromyography (EMG) activity patterns of selected trunk and thigh muscles between the affected and unaffected sides during the sit-to-stand movement in ambulatory patients with post-stroke hemiparesis. This study included 20 patients with post-stroke hemiparesis. The differences between stroke fast walkers (${\geq}8m/s$, 11 subjects) and stroke slow walkers (<8 m/s, 9 subjects) were compared. The activation magnitude and onset time of the multifidus, lumbar erector spinae, hamstrings, and quadriceps during the sit-to-stand movement were recorded through surface EMG. Moreover, the EMG activation magnitude and onset time ratios of each bilateral corresponding muscle from the trunk and leg were measured by dividing the relevant values of the unaffected side by those of the affected side. In all the subjects, the activation magnitudes of the multifidus, hamstring, and quadriceps on the affected side significantly decreased compared to those on the unaffected side (p<.05). The onset time of muscle activity in the affected side was markedly delayed for the multifidus and quadriceps during the task (p<.05). The activation magnitude ratios of the quadriceps were markedly decreased in the stroke slow walkers as compared to those in the stroke fast walkers. These findings indicate that the asymmetry in the multifidus, hamstring, and quadriceps muscle activation patterns in patients with post-stroke hemiparesis may be due to the excessive muscle activation in the unaffected side to compensate for the weakened muscle activity in the affected side. Our findings may provide researchers and clinicians with information that can be useful in rehabilitation therapy.

The influence of hamstring shortness on thigh-muscles during lunge exercises (런지 운동 시 뒤넙다리근의 단축이 넙다리 근육 활성도에 미치는 영향)

  • Choi, Bo ram
    • Journal of Korean Physical Therapy Science
    • /
    • v.29 no.3
    • /
    • pp.21-28
    • /
    • 2022
  • Background: Hamstring shortness results in the inappropriate activation of the quadriceps femoris because of the loss of the reciprocal inhibition mechanism. The purpose of this study was to investigate the effects of that activation during lunge exercises on the vastus medialis, vastus lateralis, medial, and lateral hamstrings in participants with hamstring shortness and normal length. Design: Quasi-experimental design Methods: Participants were divided into a hamstring shortness group(n=20) and a hamstring normal length group(n=23), based on a hamstring length test. During lunge exercises, muscle activation of the vastus lateralis, vastus medialis, medial, and lateral hamstrings were measured by electromyography. Results: Each muscle tested was less activated in the hamstring shortness group than in the hamstring normal length group. However, there was no statistically significant difference between the groups (p>.05). Conclusion: Although there was no significant difference between the shortness and normal hamstring groups during short lunge exercise time, longer exercising periods will result in the inappropriate activation of the quadriceps femoris. During lunge exercise, hamstring shortness causes an imbalance activation of quadriceps femoris and hamstring, and continuous hamstring shortness can cause damage on joints of lower limb.

Effect on Squatting with Short Foot Exercise on Muscle Activation and Onset of Contraction in the Quadriceps Femoris

  • Noh, Hyunwoo;Jung, Jihye;Lee, Seungwon
    • Physical Therapy Rehabilitation Science
    • /
    • v.10 no.3
    • /
    • pp.367-373
    • /
    • 2021
  • Objective: Short foot exercise(SFE) is frequently used to increase the medial longitudinal arch of the foot, as well as the intrinsic foot muscles. This studyinvestigated the effects of SFE onmuscular activity and the onset of contraction of the quadriceps femoris muscle during squats in healthypeople. It also aimed to compare and analyze the results with those of the general squat method and propose a more efficient squat method. Design: Cross-sectional study. Methods: This study compared 20 adults (male=10, female=10) who statisfied the inclusion criteria for the muscle activity and onset of the muscle contraction of the quadriceps femoris using surface EMG under two conditions: general squats and SFE squats. Results: Separate analyses and comparisons of the outcomes of the SFE squat and the general squat, showed a significant increase in the muscle activities of the rectus femoris and vastus medial muscles in both males and females (p<0.05). The onset of muscle contraction was significantly delayed for the vastus lateralis relative to that for the vastus medialis (p<0.05). However, it delayed significantly in females, but not in males. Conclusions: The SFE squats induced selective muscular activities of the rectus femoris and vastus medialis muscels and affected the onset of contraction of the vastus medialis and lateralis muscles.