• Title/Summary/Keyword: Quadriceps angle

Search Result 67, Processing Time 0.022 seconds

Effects of Knee and Foot Position on EMG Activity and Ratio of the Vastus Medialis Oblique and Vastus Lateralis during Squat Exercise (스쿼트 운동시 자세가 안쪽빗넓은근과 가쪽넓은근의 근활성도 및 근활성비에 미치는 효과)

  • Kim, Hyun-Hee;Song, Chang-Ho
    • Journal of muscle and joint health
    • /
    • v.17 no.2
    • /
    • pp.142-150
    • /
    • 2010
  • Purpose: The purpose of this study was to examine EMG activities and VMO/VL ratio of the vastus medialis oblique, vastus lateralis, and rectus femoris during squat exercise (knee angle: 15, 45, and 60 degrees; tibial rotation: internal rotation, neutral, and external rotation). Methods: Twelve subjects performed squat exercise at each knee angle and tibial rotation while electromyographic (EMG) activity was collected. Statistical analysis consisted of two-way repeated measures analysis of variance with post hoc analysis. Results: There were significant main effects of knee angles and foot positions and interaction effect on EMG activities of vastus medialis oblique and vastus lateralis. VMO/VL ratios were significantly different by tibial rotations and there was an interaction effect. A neutral position produced significantly more VMO/VL activity ratio than that from internally rotated position and externally rotated position at 60 degrees. Conclusion: Considering the interaction effects for EMG activity across quadriceps muscles tested, the 60 degrees knee angle with a neutral foot position may provide the most effective condition for patients with acute patellofemoral syndrome.

The Relationship Between the Range of Hip Rotation and the Quadriceps Angle in Subjects With and Without Flat Foot

  • Lee, Keun-hyo;Chon, Seung-chul
    • Physical Therapy Korea
    • /
    • v.25 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • Background: Alignment of the lower limb is an important factor, influencing balance and gait in kinematics and kinetics, in patients with and without a flat arched foot. Flat arched foot are associated with the range of motion (ROM) of the hip and alignments of the knee joints, is strongly influenced. Objects: The purpose of this research was to investigate the relationship between hip joint ROM and quadriceps angle (Q-angle), by dividing them into two groups according to the presence or absence of flat feet, using a navicular drop test (NDT) and resting calcaneal stance position (RCSP). Methods: Forty elderly patients were allocated to the experimental group (flat foot group, n1=20) or the control group (non-flat group, n2=20). Universal and digital goniometer, tractograph and tape measure were used to determine the related changes in the hip ROM, Q-angle, NDT and RCSP. Results: Data were analyzed using the Pearson correlation coefficients. Active internal ROM of the hip joint (right, r=.803, p<.001), (left, r=.951, p<.001) were highly correlated with NDT, and also, was moderately correlated with Q-angle (right, r=.562, p=.019), (left, r=.757, p<.001). Passive internal ROM of the hip joint (right, r=.742, p=.001), (left, r=.922, p<.001) were highly correlated with NDT, and also, was moderately correlated with RCSP (right, r=-.530, p=.029) and with Q-angle (right, r=.710, p=.001), (left, r=.698, p=.002) in the flat foot group. However, no strong correlation among the hip ROM, NDT, RCSP and Q-angle were found in the non-flat foot group. Conclusion: This research may provide evidence of the correlations between hip internal ROM and flat foot.

Effects of Angle and Direction of Maximal Isometric Contraction of Non-Hemiparetic Knee on Electromyographic Activity of Hemiparetic Quadriceps Femoris in Patients With Stroke (뇌졸중 환자의 비마비측 슬관절 등척성 수축시 각도와 운동 방향이 마비측 대퇴사두근 활성도에 미치는 영향)

  • Ki, Kyong-Il;Kim, Suhn-Yeop;Oh, Duck-Won;Choi, Jong-Duk;Kim, Kyung-Hwan
    • Physical Therapy Korea
    • /
    • v.17 no.2
    • /
    • pp.1-9
    • /
    • 2010
  • To develop effective training methods for strengthening a weakened quadriceps femoris muscle in hemiplegic patients, we examined the effects of maximal isometric contraction of the nonparalyzed knee joint on the electromyographic activities of the paralytic muscle. An electromyogram (EMG) was used to record the electromyographic activities of the paralytic quadriceps femoris muscle in 27 hemiplegic patients. The maximal isometric contraction was measured for each subject to normalize the electromyographic activities. The maximal isometric extension and flexion exercises were randomly conducted when the knee joint angles of the nonparalyzed knees were $0^{\circ}$, $45^{\circ}$, and $90^{\circ}$. The patients were encouraged to maintain maximal isometric contractions in both knee joints during each measurement, and three measurements were taken. A one-minute rest interval was given between each measurement to minimize the effects of muscle fatigue. An average from the three values was taken as being the root mean square of the EMG and was recorded as being the maximal isometric contraction. The electromyographic activity obtained for each measurement was expressed as a percentage of the reference voluntary contraction, which was determined using the values obtained during the maximal isometric contraction. The results of this study are summarized as follows: First, when the knee joint angle of the nonparalyzed knee was $0^{\circ}$, the electromyographic activities of the paralytic medial aspect of rectus femoris were related to measurement by a maximal isometric flexion exercise than by an extension exercise (p<.05). Second, when the knee joint angle of the nonparalyzed knee was $90^{\circ}$, the electromyographic activities of the paralytic lateral aspect of rectus femoris were related to measurement by a maximal isometric flexion exercise than by an extension exercise (p<.05). The results show that myoelectrical activities of paralytic quardriceps were not related to measurement angles and exercise directions of the nonparalized knee joint. Studies on various indirect intervention to improve muscular strength of patients with nervous system disorders of the weakened muscle should be constantly conducted.

Surface Topographic Measurement Method for Assessing Lower Extremity Alignment: Examination on a novel clinical and research Tool (하지 정렬 평가를 위한 체표면 토포그래피를 이용한 측정법: 새로운 임상 및 연구 도구에 대한 검토)

  • Yim, Ji-Young;Yim, Hyun-Seung;Park, Dae-Sung;Lee, Na-Kyung;Lee, Na-Kyung
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.1
    • /
    • pp.37-45
    • /
    • 2016
  • The purpose of this study was to assess the intra-rater, inter-rater and test-retest reliability and validity of frontal plane lower extremity alignment estimated from a rasterstereographic method using ABW-Mapper. Eighteen subjects participated in this study. The S angle (stereographic angle-frontal plane lower extremity alignment estimated from a rasterstereographic method) in standing was measured throughout the two sessions with one week interval by two different readers. In the first session, a reader measured S angle twice per subject with a short break in-between. The Q-angle (quadriceps angle) was measured using a standard goniometer from a photography taken through digital camera with the participant standing in the same position as in the S angle measurement. The HKA(hip-knee-ankle) angle was measured from a computer based digital radiograph with the computerized measurement software. Reliability was tested using intraclass correlation coefficients(ICC). Validity was tested using a Pearson's correlation coefficient. Excellent intra-rater(ICC=0.956~0.974), inter-rater(ICC=0.962), test-retest reliability (ICC=0.945) were demonstrated. There were strong negative correlations between S angle and Q-angle (r=-0.739), and between S angle and HKA angle (r=-0.702). Therefore, the S angle measured using a rasterstereographic mapper may be used to as a preliminary or supplementary tool to evaluate and study LE alignment in the frontal plane in relation to HKA angle or Q-angle.

Electromyographic Analysis of Hamstrings and Quadriceps Coactivation During Single-limb-deadlift Exercises according to the Angle of the Knee Joint (무릎관절 각도에 따른 한 다리 데드리프트 운동시 뒤넙다리근과 넙다리네갈래근의 근활성도 비교)

  • Moon, Sang-Jae;Kim, Jeong-Wook;Park, Min-Chull
    • PNF and Movement
    • /
    • v.19 no.1
    • /
    • pp.79-86
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate muscle activity according to knee flexion angle during single-limb-deadlift exercises. Methods: In total, 26 healthy volunteers participated. The single-limb-deadlift consisted of 0˚, 15˚, and 30˚ knee joint bending. The electromyography data were collected from the semitendinosus (SM), the biceps femoris (BF), the rectus femoris (RF), the vastus lateralis (VL), and the vastus medialis (VM). In addition, hamstrings and quadriceps (HQ) ratio was measured during the single-limb-deadlift using electromyography. Results: During the single-limb-deadlift, RF, VL, and VM were significantly higher at 30˚ bending angles compared to muscle activity of 0˚ and 15˚ knee-joint bending. The HQ ratio had significant differences in all three knee joint bending angles. In particular, the single-limb-deadlift carried out to a 30˚ knee-joint bend showed the closest value to 1. Conclusion: The most balanced coactivation ratios were observed during a single-limb-deadlift to a 30˚ knee-joint bend angle. A single-limb-deadlift at a knee-bend angle of less than 30˚ could be used as an exercise to prevent ACL injury. It could also be used for post-injury rehabilitation programs by increasing knee-joint stability.

Effect of Changes in Knee Angle and Weight-Shifting of the Sole on the Lower Extremity Muscle Activity during the Bridge Exercise

  • Cho, Hye-Jung;Lee, Min-Woo;Bak, Se-Young;Kim, Hyeong-Dong;Shin, Unchul
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.17 no.2
    • /
    • pp.21-28
    • /
    • 2022
  • PURPOSE: This study examined the effect of changes in the knee angle and weight shifting of the sole on the activity of the lower extremity muscles during bridge exercise. METHODS: The subjects of this study included 20 healthy adult women (mean age 29.8 ± 4.32). The subjects performed the bridge exercise under three weight-shifting conditions general bridge (GB), hindfoot press bridge (HPB), and fore-foot bridge (FPB) and at two knee angles (90° and 60°). During the bridge exercise, the activity of the quadriceps femoris (rectus femoris, vastus medialis oblique, and vastus lateralis) and biceps femoris muscles were measured using an electromyography sensor. RESULTS: In the quadriceps femoris, the muscle activity of HPB and FPB was significantly higher than that of the GB at knee angles of 90° and 60° (p < .05). In the biceps femoris, the muscle activity increased significantly in the order of GB < HPB < FPB, and the knee angle increased significantly at 60° rather than at 90° (p < .05). There was no significant difference according to the knee angle in all muscles except for the biceps femoris. CONCLUSION: These findings suggest that the weight-shifting bridge of sole bridge exercise was more effective in increasing the activation of the lower extremity muscles than the GB.

The Effects of Knee Brace on the Knee Muscular Neuro-Biomechanical Variables during the Rebound in Female Highschool Basketball Players (여자 고등학교 농구 선수들이 리바운드 점프 후 착지할 때 무릎보호대가 무릎의 근신경 생체역학적 변인에 미치는 효과)

  • Han, Ki-Hoon;Lim, Bee-Oh
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.107-113
    • /
    • 2007
  • The purpose of this study were to investigate the effects of knee brace on the knee muscular neuro-biomechanical variables during the rebound in female highschool basketball players. Twelve high school female ($17.9{\pm}0.8years$) basketball players rebound jumped for maximal vertical height to sufficiently stress the anterior cruciate ligament with and without knee brace. Kinematic data were collected to estimate the knee flexion, abduction angles and jump height. The EMG data from the biceps femoris and rectus femoris was used to estimate the ratio of quadriceps muscle activity. Female athletes with knee brace showed more reduced the knee abduction angle and the ratio of quadriceps muscle activity at foot contact phase than without knee brace. In conclusion, Female athletes with brace reduced knee anterior cruciate ligament loads.

The Differences in Patellofemoral Compression Force with Different Height (드롭랜딩 시 높이에 따른 슬개대퇴 압박력의 차이)

  • Cho, Joon-Haeng;Kim, Kyoung-Hun;Moon, Gon-Sung;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.3
    • /
    • pp.335-343
    • /
    • 2011
  • Patellofemoral pain syndrome is the most common problem involving the knee, accounting for 25% of knee injuries. Repetitive, overuse activities cause increased force at the patellofemoral joint, resulting in pain during flexion and extension activities. Most research have been conducted in exploring the patellofemoral compressive force in gait, squat and lunges, even though in real cases, possibilities in landing exist. The purpose of this study was to compare the differences in patellofemoral compressive force according to two different height. Sixteen collegiate male students(age: 22.25 ${\pm}$ 3.30 yrs, height: 177.25 ${\pm}$ 4.44 cm, weight: 77.50 ${\pm}$ 8.18 kg) were chosen. The subjects performed drop landings in 45 cm, 60 cm. The findings demonstrated that higher height showed peak knee extension moment, quadriceps contraction force, patellofemoral compressive force with increased VGRF. Regarding the patellofemoral joint compressive force, it increased by quadriceps contraction force with knee flexion during landing, yet, it showed no difference in maximal knee flexion. To minimize patellofemoral joint stress and reduce the likelihood of developing PFPS, we recommend that predesigned quadriceps and hip muscle group strengthening are needed during conditioning and training.

The Effect of Posture Holding Band on Muscle Activity of Quadriceps Femoris and Weight Distribution during Squat Exercise (자세유지밴드가 스쿼트 운동 시 넙다리네갈래근의 근활성도와 체중분포에 미치는 영향)

  • Chung-Yoo Kim;Won-Sik Bae;Sung-Ha Yu
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.91-98
    • /
    • 2023
  • Purpose : The purpose of this study was to investigate the effect of the posture holding band on muscle activity of the rectus femoris, medial vastus, and vastus lateralis muscles and weight distribution during squat exercise. Methods : This study was conducted with 30 healthy adult men and women in their 20s, and all subjects were randomly assigned to the experimental group and the control group. Squat exercise was performed for 6 weeks. The experimental group received squat exercise while wearing a posture holding band, and the control group applied without wearing a posture holding band. Muscle activity of the quadriceps femoris (rectus femoris, vastus medialis, and vastus lateralis) and weight distribution (knee flexion 0 °, 30 °, 60 °, and 90 °) was measured. Results : According to the results of this study, all three muscles showed a main effect on time and group, and a significant interaction was shown only in the vastus lateralis. In addition, the value of the weight distribution difference according to the knee flexion angle did not show a main effect according to time and group at 30 ° of knee flexion, but showed an interaction. Conclusion : It was confirmed that the application of the posture holding band during squat exercise increased the muscle activity of the quadriceps muscle, and showed greater changes in the vastus lateralis muscle. In addition, it was confirmed that the difference in weight distribution was reduced in the knee flexion, and in particular, a greater change was shown in reducing the difference in weight distribution in the knee flexion of 30 °. Therefore, it is considered that the effect of the exercise can be further enhanced if the unnecessary movement of the trunk is controlled by using equipment such as a posture holding band during squat exercise.

The Relationships Between Valgus Collapse Knee Position and Quadriceps Activity During a Single Limb Step Down in Female Subjects (젊은 여성의 한쪽 다리 스텝다운 동작 시 슬관절 외반 정도와 대퇴사두근 근활성도 간의 상관관계)

  • Lee, Se-Hee;Moon, Young;Song, Ji-Hyun;Kim, Suhn-Yeop;Jang, Hyun-Jeong
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.18 no.2
    • /
    • pp.41-47
    • /
    • 2012
  • Background: This study was designed to investigate the correlation between electromyography (EMG) activities in the vastus medialis oblique (VMO) vs vastus lateralis (VL) activity ratio and the valgus collapse knee position while stepping down. Methods: Twenty healthy women volunteered to participate in this study. We measured the frontal-plane projections of the knee valgus angle, knee valgus distance, and hip adduction angle by using a digital camcorder. After 3 repetitions of the step down (dominant side) exercise, the findings of the static and dynamic phases were analyzed. EMG activities data of the VMO:VL activity ratio were recorded during the step down exercise and were normalized to the maximal voluntary isometric contraction (MVIC) of the quadriceps. A paired t-test was used to compare the findings of the static and dynamic phases. We analyzed the Spearman's rank order correlation coefficient between the and VMO:VL ratio. Results: Hip adduction angle, knee valgus angle, VMO activity, VL activity, VMO:VL activity ratio were statistically higher in the dynamic phase than in the static phase (p<.05). Frontal-plane projections of knee valgus angle were significantly correlated with hip adduction angle (r=.459, p<.05) and knee valgus distance (r=.505, p<.05). However, the EMG activity ratio of the VMO and the VL did not show a significant change during step down exercise with respect to hip adduction angle (p=.875), knee valgus angle (p=.618), and knee valgus distance (p=.701). Conclusion: The results from this study indicate that frontal-plane projections of knee valgus angle were associated with hip adduction angle and knee valgus distance. On the basis of these results, the knee valgus distance may be used to determine the valgus collapse knee position while stepping down.

  • PDF