• Title/Summary/Keyword: Quadrature hybrid

Search Result 46, Processing Time 0.021 seconds

Low-Complexity Hybrid Adaptive Blind Equalization Algorithm for High-Order QAM Signals

  • Rao, Wei;Lu, Changlong;Liu, Yuanyuan;Zhang, Jianqiu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.8
    • /
    • pp.3772-3790
    • /
    • 2016
  • It is well known that the constant modulus algorithm (CMA) presents a large steady-state mean-square error (MSE) for high-order quadrature amplitude modulation (QAM) signals. In this paper, we propose a low-complexity hybrid adaptive blind equalization algorithm, which augments the CMA error function with a novel constellation matched error (CME) term. The most attractive advantage of the proposed algorithm is that it is computationally simpler than concurrent CMA and soft decision-directed (SDD) scheme (CMA+SDD), and modified CMA (MCMA), while the approximation of steady-state MSE of the proposed algorithm is same with CMA+SDD, and lower than MCMA. Extensive simulations demonstrate the performance of the proposed algorithm.

KSLV-I FTS 적용을 위한 UHF 전력분배기 설계 및 제작

  • Hwang, Soo-Sul;Lim, You-Chol;Lee, Jae-Deuk
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.171-191
    • /
    • 2005
  • This Technical Memo(TM) was written for the purpose of determining the type of UHF-band power divider which is applicable to KSLV-1. For this, some different kinds of power divider are compared with there types and characteristics. And then, we select three types of power divider(which is Wilkinson power divider, Quadrature hybrid divider and Ring hybrid divider) and perform Schematic and Momentum simulation for finding the optimized characteristics. With this results, in order to demonstrate the selected power divider, we manufactured UHF-band power dividers using FR-4 epoxy plate. By the measured results, we obtain the similar results compare with simulation and fabrication. And Quadrature hybrid power divider is suitable to application to KSLV-1.

  • PDF

Quantum Coherent Dissociation in a Hybrid Atom-light System with Photon Loss

  • Xiaoyang Yuan;Jialu Yin;Jiahao Xu;Yixiao Huang;Zhengda Hu
    • Current Optics and Photonics
    • /
    • v.8 no.1
    • /
    • pp.105-111
    • /
    • 2024
  • We investigate the effect of photon loss on pair production in a hybrid atom-light system. The loss of light field not only affects the generation of photons, but also prevents the generation of atomic collective excitation, although the atoms are not influenced directly. We propose an unbalanced homodyne detection of the number of atomic collective excitation that overcomes the challenge caused by counting uncertainty in practical measurement. In discussion, we show that the intermode correlations and the number correlation is closely related to the initial input state, while the quadrature correlations are independent of the initial state and always exhibit opposite intermode correlations even in the presence of loss.

Design and Fabrication of S-band Ultra High Power Transistorized Amplifier (마이크로파대 고출력 트란지스터 증폭기의 설계와 시작)

  • 심재철;김종련
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.14 no.5
    • /
    • pp.7-14
    • /
    • 1977
  • Conventionally, a TIVT has been used for high power amplification in the microwave frequency range. However, an ultra-high-power amplifier in the 2GHz range has successfully been designed and fabricated employing high power transistors developed recently and available commercially. In the design of the amplifier, a balanced-pair configuration is adopted in order to obtain very high microwave power, and a good impedance matching is achieved by making use of microstripline techniques. For the RF power divider as well as combiner, an approach of stripline directional coupler isadopted because of its easiness in fabrication. The coupler so designed and fabricated indicates a satisfactory performance as a quadrature hybrie coupler. Measurements on the amplifier developed for an immediate commercial application also exhibit excellent overall performance characteristics RF power output, 14 watts, gain 14dB, frequency bandwidth, 160MHz, effciency 40%.

  • PDF

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

Comparative Study of Flux Regulation Methods for Hybrid Permanent Magnet Axial Field Flux-switching Memory Machines

  • Yang, Gongde;Fu, Xinghe;Lin, Mingyao;Li, Nian;Li, Hao
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.158-167
    • /
    • 2019
  • This research comparatively studies three kinds of flux regulation methods, namely, stored capacitor discharge pulse (SCDP), constant current source pulse (CCSP), and quantitative flux regulation pulse (QFRP), which are used for hybrid permanent magnet (PM) axial field flux-switching memory machines (HPM-AFFSMMs). Through an analysis of the operation principle and the series hybrid PM flux regulation mechanism of the objective machine, the circuit topologies and flux regulation process of these flux regulation methods are addressed in detail. On the basis of a simulation, the flux regulation characteristics of the researched machine during the magnetization and demagnetization processes are comparatively evaluated. Then, machine performance, including back EMF, direct and quadrature axis inductances, and magnetization and demagnetization characteristics, is quantitatively investigated. Results show that the QFRP enables the HPM-AFFSMM to achieve a less harmonic component of back EMF by approximately 7.28% and 7.97% at the magnetization and demagnetization states, respectively, and a more complete magnetization process than the SCDP and CCSP.

A Design of MMIC Mixer for I/Q Demodulator of Non-contact Near Field Microwave Probing System (비접촉 마이크로웨이브 프루브 시스템의 I/Q Demodulator를 위한 MMIC Mixer의 설계)

  • Ryu, Keun-Kwan;Kim, Sung-Chan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.1023-1028
    • /
    • 2012
  • A MMIC (Monolithic Microwave Integrated Circuit) mixer chip using the Schottky diode of an GaAs p-HEMT process has been developed for the I/Q demodulator of non-contact near field microwave probing system. A single balanced mixer type is adopted to achieve simple structure of the I/Q demodulator. A quadrature hybrid coupler and a quarter wavelength transmission line for 180 degree hybrid are realized with lumped elements of MIM capacitor and spiral inductor to reduce the mixer chip size. According to the on-wafer measurement, this MMIC mixer covers RF and LO frequencies of 1650MHz to 2050MHz with flat conversion loss. The MMIC mixer with miniature size of $2.5mm{\times}1.7mm$ demonstrates conversion loss below 12dB for both variations of RF and LO frequencies, LO-to-IF isolation above 43dB and RF-to-IF isolation above 23dB, respectively.

Free vibration of thermo-electro-mechanically postbuckled FG-CNTRC beams with geometric imperfections

  • Wu, Helong;Kitipornchai, Sritawat;Yang, Jie
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.319-332
    • /
    • 2018
  • This paper investigates the free vibration of geometrically imperfect functionally graded car-bon nanotube-reinforced composite (FG-CNTRC) beams that are integrated with two sur-face-bonded piezoelectric layers and subjected to a combined action of a uniform temperature rise, a constant actuator voltage and an in-plane force. The material properties of FG-CNTRCs are assumed to be temperature-dependent and vary continuously across the thick-ness. A generic imperfection function is employed to simulate various possible imperfections with different shapes and locations in the beam. The governing equations that account for the influence of initial geometric imperfection are derived based on the first-order shear deformation theory. The postbuckling configurations of FG-CNTRC hybrid beams are determined by the differential quadrature method combined with the modified Newton-Raphson technique, after which the fundamental frequencies of hybrid beams in the postbuckled state are obtained by a standard eigenvalue algorithm. The effects of CNT distribution pattern and volume fraction, geometric imperfection, thermo-electro-mechanical load, as well as boundary condition are examined in detail through parametric studies. The results show that the fundamental frequency of an imperfect beam is higher than that of its perfect counterpart. The influence of geometric imperfection tends to be much more pronounced around the critical buckling temperature.

A Design of Acoustic-based Underwater Image Transmission System Based on the Multipath Analysis. (Multipath를 고려한 수중영상 전송 시스템 설계)

  • 임용곤;박종원;최영철
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.202-211
    • /
    • 2001
  • This paper deals with an analysis of multipath which affect a transmission performance in underwater acoustic channel. Underwater acoustic channel with multipath structure is introduced to mathematical modelling for a basin environment. In this paper, SMR(Signal to Multipath Ratio) which is defined as a parameter of multipath's effect is presented as a mathematical equation, and the equation of SMR is simulated by MATLAB program. Furthermore, this paper is also dealt with an implementation of modulation and demodulation system for acoustic transmission. Acoustic Transmission is limited by frequency bandwidth, so $\pi/4 QPSK$(Quadrature Phase Shift Keying) methods which is very useful at frequency ]imitation and FM(Frequency Modulation) are used at acoustic communication system. This implemented hybrid modulation/demodulation system is used as an analog board of image transmission system. In this system, adaptive equalization for reducing the multipath effect and baseline JPEG used for an image compressing are also stated.

  • PDF

A Design of Acoustic-based Underwater Image Transmission System Based on the Multipath Analysis. (Multipath를 고려한 수중영상 전송 시스템 설계)

  • 임용곤;박종원;최영철
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.419-425
    • /
    • 2000
  • This paper deals with an analysis of multipath which affect a transmission performance in underwater acoustic channel. Underwater acoustic channel with multipath structure is introduced to mathematical modelling for a basin environment. In this paper, SMR(Signal to Multipath Ratio) which is defined as a parameter of multipath's effect is presented as a mathematical equation, and the equation of SMR is simulated by MATLAB program. Furthermore, this paper is also dealt with an implementation of modulation and demodulation system for acoustic transmission Acoustic Transmission is limited by frequency bandwidth so $\pi$/4 Quadrature Phase Shift Keying) methods which is very useful at frequency limitation and FM(Frequency Modulation) are used at acoustic communication system. This implemented hybrid modulation/demodulation system is used as an analog board of image transmission system

  • PDF