• Title/Summary/Keyword: Quadratic stability

Search Result 344, Processing Time 0.025 seconds

SOLUTION AND STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

  • Jun, Kil-Woung;Jung, Il-Sook;Kim, Hark-Mahn
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.815-830
    • /
    • 2009
  • In this paper we establish the general solution of the following functional equation with mixed type of quadratic and additive mappings f(mx+y)+f(mx-y)+2f(x)=f(x+y)+f(x-y)+2f(mx), where $m{\geq}2$ is a positive integer, and then investigate the generalized Hyers-Ulam stability of this equation in quasi-Banach spaces.

  • PDF

A New Approach to Stability Analysis of Singleton-type Fuzzy Control Systems (싱글톤 퍼지 제어 시스템의 새로운 안정도 해석법)

  • 김은태;이희진;이상형;박민용
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.788-791
    • /
    • 1999
  • In recent years, many studies have been conducted on fuzzy control since it can surpass the conventional control in several respects. In this paper, numerical stability analysis methodology for the singleton-type linguistic fuzzy control systems is proposed. The Proposed stability analysis is not the analytical method but the numerical method using the convex optimization technique of Quadratic Programming (QP) and Linear Matrix Inequalities (LMI).

  • PDF

ON THE HYERS-ULAM SOLUTION AND STABILITY PROBLEM FOR GENERAL SET-VALUED EULER-LAGRANGE QUADRATIC FUNCTIONAL EQUATIONS

  • Dongwen, Zhang;John Michael, Rassias;Yongjin, Li
    • Korean Journal of Mathematics
    • /
    • v.30 no.4
    • /
    • pp.571-592
    • /
    • 2022
  • By established a Banach space with the Hausdorff distance, we introduce the alternative fixed-point theorem to explore the existence and uniqueness of a fixed subset of Y and investigate the stability of set-valued Euler-Lagrange functional equations in this space. Some properties of the Hausdorff distance are furthermore explored by a short and simple way.

Relaxed Stability Condition for Affine Fuzzy System Using Fuzzy Lyapunov Function (퍼지 리아푸노프 함수를 이용한 어파인 퍼지 시스템의 완화된 안정도 조건)

  • Kim, Dae-Young;Park, Jin-Bae;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1508-1512
    • /
    • 2012
  • This paper presents a relaxed stability condition for continuous-time affine fuzzy system using fuzzy Lyapunov function. In the previous studies, stability conditions for the affine fuzzy system based on quadratic Lyapunov function have a conservativeness. The stability condition is considered by using the fuzzy Lyapunov function, which has membership functions in the traditional Lyapunov function. Based on Lyapunov-stability theory, the stability condition for affine fuzzy system is derived and represented to linear matrix inequalities(LMIs). And slack matrix is added to stability condition for the relaxed stability condition. Finally, simulation example is given to illustrate the merits of the proposed method.

REMARKS ON THE PAPER: ORTHOGONALLY ADDITIVE AND ORTHOGONALLY QUADRATIC FUNCTIONAL EQUATION

  • Kim, Hark-Mahn;Jun, Kil-Woung;Kim, Ahyoung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.377-391
    • /
    • 2013
  • The main goal of this paper is to present the additional stability results of the following orthogonally additive and orthogonally quadratic functional equation $$f(\frac{x}{2}+y)+f(\frac{x}{2}-y)+f(\frac{x}{2}+z)+f(\frac{x}{2}-z)=\frac{3}{2}f(x)-\frac{1}{2}f(-x)+f(y)+f(-y)+f(z)+f(-z)$$ for all $x,y,z$ with $x{\bot}y$, which has been introduced in the paper [11], in orthogonality Banach spaces and in non-Archimedean orthogonality Banach spaces.

Robust Pole Assignment of Linear Systems with Time-Varying Uncertainty (시변 불확정성을 갖는 선형 시스템의 강인 극점 배치)

  • Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.1
    • /
    • pp.31-35
    • /
    • 1999
  • In this paper, we consider the robust pole assignment and the upper bound of quadratic cost function for the linear systems with time-varying uncertainy. The considered uncertainties are both the norm bounded unstructured case and the structured case that has the matrix polytope type uncertain structure. We derve conditions that guarantee the robust pole assignment inside a disk in the L.H.P. and the robust stability. Also, we derive the upper bound of quadratic cost for thil pole assigned systems. Finally, we show the usefulness of our results by an example.

  • PDF