• Title/Summary/Keyword: Quadratic stability

Search Result 344, Processing Time 0.025 seconds

ON THE STABILITY OF AN AQCQ-FUNCTIONAL EQUATION

  • Park, Choonkil;Jo, Sung Woo;Kho, Dong Yeong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.22 no.4
    • /
    • pp.757-770
    • /
    • 2009
  • In this paper, we prove the generalized Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equation (0.1) f(x + 2y) + f(x - 2y) = 4f(x + y) + 4f(x - y) - 6f(x) + f(2y) + f(-2y) - 4f(y) - 4f(-y) in Banach spaces.

  • PDF

A FIXED POINT APPROACH TO THE ORTHOGONAL STABILITY OF MIXED TYPE FUNCTIONAL EQUATIONS

  • JEON, YOUNG JU;KIM, CHANG IL
    • East Asian mathematical journal
    • /
    • v.31 no.5
    • /
    • pp.627-634
    • /
    • 2015
  • In this paper, we investigate the following orthogonally additive-quadratic functional equation f(2x + y) - f(x + 2y) - f(x + y) - f(y - x) - f(x) + f(y) + f(2y) = 0. and prove the generalized Hyers-Ulam stability for it in orthogonality spaces by using the fixed point method.

THE STABILITY OF A MIXED TYPE FUNCTIONAL INEQUALITY WITH THE FIXED POINT ALTERNATIVE

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.253-266
    • /
    • 2004
  • In this note, by using the fixed point alternative, we investigate the modified Hyers-Ulam-Rassias stability for the following mixed type functional inequality which is either cubic or quadratic: $\parallel$8f(x-3y) + 24f(x+y) + f(8y) -8〔f(x+3y) + 3f(x-y) + 2f(2y)〕$\parallel$$\leq$$\varphi$(x,y).

ON THE STABILITY OF THE QUADRATIC-ADDITIVE FUNCTIONAL EQUATION IN RANDOM NORMED SPACES VIA FIXED POINT METHOD

  • Jin, Sun Sook;Lee, Yang-Hi
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.201-215
    • /
    • 2012
  • In this paper, we prove the stability in random normed spaces via fixed point method for the functional equation $f(x+y+z+w)\;+\;2f(x)\;+\;2f(y)\;+\;2f(z)\;+\;2f(w)\;-\;f(x+y)\;-\;f(x+z)\;-\;f(x+w)\;-\;f(y+z)\;-\;f(y+w)\;-\;f(z+w)=0$.