• Title/Summary/Keyword: Quadratic Model

Search Result 940, Processing Time 0.031 seconds

A New Unified Method for Anti-windup and Bumpless Transfer (누적방지 무충돌전환을 위한 새로운 통합형 기법)

  • Kim, Tae-Shin;Kwon, Oh-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.655-660
    • /
    • 2009
  • In many real applications, the discrepancy problem between controller outputs and plant inputs or the abrupt variation problem of controller outputs can occur. These problems have a negative effect on control performance and stability. It is well-known that two phenomena called 'windup' and 'bump' cause these problems. So far these problems have been studied separately in each side of the anti-windup and the bumpless transfer. This paper proposes a new unified method combines the anti-windup and the bumpless transfer method using the linear quadratic minimization and a proper state space model representation for the anti-windup controller. The proposed method has a feature that it takes account of both the anti-windup and the bumpless transfer in one formula. Finally, we exemplify the performance of the proposed method via numerical examples using the controller switching between the anti-windup PID controller and the anti-windup LQ controller.

CFD Simulation of Axial Turbulent Flow in a Triangular Rod Bundle

  • In W.K.;Chun T. H.;Myong H. K;Ko K
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.71-73
    • /
    • 2003
  • A CFD analysis has been made for fully developed turbulent flows in a triangular bare rod bundle with pitch to diameter ratio (P/D) of 1.123. The nonlinear turbulence models predicted the turbulence­driven secondary flow in the triangular subchannel. The nonlinear quadratic $\kappa-\omega$ models by Speziale and Myong-Kasagi predicted turbulence structure in the rod bundle fairly well. The nonlinear quadratic and cubic $\kappa-\omega$ models by Shih et al. and Craft et al. showed somewhat weaker anisotropic turbulence. The differential Reynolds stress model appeared to overpredict the turbulence anisotropy in the rod bundle.

  • PDF

An Experimental study on Prediction of Back-bead Geometry in Pipeline Using the GMA Welding Process (GMA를 이용한 배관용접의 이면비드 형상예측에 관한 실험적 연구)

  • Kim, Ji-Sun;Kim, Ill-Soo;Na, Hyun-Ho;Lee, Ji-Hye
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.74-80
    • /
    • 2011
  • In this study, a variety of welding experiments were carried out to optimize root-pass welding process using GMA process. Based on the experimental results, optimal welding conditions were selected after analyzing correlation between welding parameters and back-bead geometry. Then, effectiveness of empirical models developed was compared and analyzed, and optimized empirical models were finally developed for predicting back-bead by analyzing the main effect of each factor which affects back-bead geometry and their influence on interaction. Also, functions proper for expressing the surface of back-bead were selected using diverse quadratic functions, and back-bead geometry was visualized using empirical models developed and quadratic functions.

Strain Path Dependence of Forming Limits Predicted by Barlat and Lians Non-Quadratic Anisotropic Yield riterion for Sheet Materials

  • Kim, Young-suk;Son, Hyun-sung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.210-216
    • /
    • 2001
  • This paper presents an analytical study that can predict the path-dependent forming limit of anisotropic sheet materials that experience various combinations of strain paths. To predict the forming limit diagrams(FLD), the proposed analytical procedure is performed within the framework of the Marciniak and Kuczynski(M-K) approach by using the Barlat and Lians non-quadratic anisotropic yield criterion and introducing the effect of the existence of a strain gradient over a stretching punch. The predicted path-dependent forming limit of an anisotropic sheet has been compared with the published experimental results. It has been found that the predicted path-dependent forming limits are in good agreement with the experimental data.

  • PDF

Topology Optimization of Continuum Structures Using a Nodal Volume Fraction Method

  • Lee, Jin-Sik;Lim, O-Kaung
    • Computational Structural Engineering : An International Journal
    • /
    • v.1 no.1
    • /
    • pp.21-29
    • /
    • 2001
  • The general topology optimization can be considered as optimal material distribution. Such an approach can be unstable, unless composite materials are introduced. In this research, a nodal volume fraction method is used to obtain the optimum topology of continuum structures. This method is conducted from a composite material model composed of isotropic matter and spherical void. Because the appearance of the chessboard patterns makes the interpretation of the optimal material layout very difficult, this method contains a chessboard prevention strategy. In this research, several topology optimization problems are presented to demonstrate the validity of the present method and the recursive quadratic programming algorithm is used to solve the topology optimization problems.

  • PDF

Fundamental Study for the Development of an Optimum Hull Form (최적선형개발에 대한 기초연구)

  • 최희종;전호환;정석호
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.3
    • /
    • pp.32-39
    • /
    • 2004
  • A design procedure for a ship with minimum total resistance has been developed using a numerical optimization method called SQP(sequential quadratic programming) to search for different optimal hull forms. The frictional resistance has been estimated using the ITTC 1957 model-ship correlation line formula, and the wave resistance has been evaluated using a potential-flow panel method that is based on Rankine sources with nonlinear free surface boundary conditions. The geometry of a hull surface has been modified using B-spline surface patches, during the whole optimization process. The numerical analyses have been carried out for the modified Wilgey hull at three different speeds (Fn=0.25, 0.316, 0.408), and the calculation results were compared.

An Analysis of Rolling Performance for a Barge-Type FPSO (바아지형 FPSO의 횡운동 성능에 대한 해석)

  • Choi, Yoon-Rak;Kim, Jin-Ha;Kim, Young-Su
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.3
    • /
    • pp.25-30
    • /
    • 2005
  • To predict rolling performance for a barge-type FPSO, the evaluation of correct nonlinear roll damping is critical. The square section of FPSO causes a considerable viscous damping effect. Free roll decay tests were carried out to estimate nonlinear roll damping for a barge-type FPSO, under three different conditions. The roll motion RAO was deduced from model tests in the wave condition of the wideband spectrum. In numerical calculation, the quadratic damping was considered as equivalent linear damping, using the results of free roll decay test. Tested roll performance in the JONSWAP wave spectrum was compared with numerical results. These two results shaw good agreement, in spite of the proximity of peak wave period and roll natural period.

Conservative Quadratic RSM combined with Incomplete Small Composite Design and Conservative Least Squares Fitting

  • Kim, Min-Soo;Heo, Seung-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.698-707
    • /
    • 2003
  • A new quadratic response surface modeling method is presented. In this method, the incomplete small composite design (ISCD) is newly proposed to .educe the number of experimental runs than that of the SCD. Unlike the SCD, the proposed ISCD always gives a unique design assessed on the number of factors, although it may induce the rank-deficiency in the normal equation. Thus, the singular value decomposition (SVD) is employed to solve the normal equation. Then, the duality theory is used to newly develop the conservative least squares fitting (CONFIT) method. This can directly control the ever- or the under-estimation behavior of the approximate functions. Finally, the performance of CONFIT is numerically shown by comparing its'conservativeness with that of conventional fitting method. Also, optimizing one practical design problem numerically shows the effectiveness of the sequential approximate optimization (SAO) combined with the proposed ISCD and CONFIT.

Comparison of Optimization Algorithms for Available Transfer Capability Assessment in Interconnected Systems (연계계통에서 가용송전용량 평가를 위한 최적화 알고리즘의 비교)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.12
    • /
    • pp.549-554
    • /
    • 2006
  • Available transfer capability(ATC) is an important indicator of the usable amount of transmission capacity accessible by several parties for commercial trading in power transaction activities. This paper deals with an application of optimization technique for available transfer capability(ATC) calculation and analyzes the results of ATC by considering several constraints. Especially several optimization techniques are used to solve the ATC problem with state-steady security constraints. The results are compared with that of repeat power flow(RPF), sequential quadratic programming(SQP) and linear programming(LP). The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

Tension Modeling and Looper-Tension ILQ Servo Control of Hot Strip Finishing Mills (열간 사상압연기의 장력 연산모델과 루퍼-장력 ILQ 서보 제어)

  • Hwang, I.C.;Park, C.J.
    • Journal of Power System Engineering
    • /
    • v.12 no.1
    • /
    • pp.72-79
    • /
    • 2008
  • This paper designs a looper-tension controller for mass-flow stabilization in hot strip finishing mills. By Newton's 2nd law and Hooke's law, nonlinear dynamic equations on the looper-tension system are firstly derived, and linearized by a linearization algorithm using a Taylor's series expansion. Moreover, a tension calculation model is obtained from the nonlinear dynamic equations which is called as a soft sensor of strip tension between two neighboring stands. Next, a looper-tension servo controller is designed by an ILQ(Inverse Linear Quadratic optimal control) algorithm, and it is combined with a minimal disturbance observer which to attenuate speed disturbances by AGC and operator interventions, etc.. Finally, it is shown from by a computer simulation that the proposed ILQ controller with a disturbance observer is very effective in stabilizing the strip mass-flow under some disturbances, moreover it has a good command following performance.

  • PDF